MATH 3860 Solution to HW 6

1. (10 pts) (Sec 3.3 Problem 15)

Solution: Rewrite the equation as $y^{\prime \prime}-\frac{t+2}{t} y^{\prime}+\frac{t+2}{t^{2}} y=0$. Let $p(t)=$ $-\frac{t+2}{t}=-1-\frac{2}{t}$. Now the Wronskian is $W(t)=c e^{-\int p(t) d t}=c e^{-\int\left(-1-\frac{2}{t}\right) d t}=$ $c e^{\int\left(1+\frac{2}{t}\right) d t}=c e^{t+2 \ln t}=c e^{t} e^{2 \ln t}=c e^{t} t^{2}$.
2. (10 pts) (Sec 3.3 Problem 18)

Solution: Rewrite the equation as $y^{\prime \prime}-\frac{2 x}{1-x^{2}} y^{\prime}+\frac{\alpha(\alpha+1)}{1-x^{2}} y=0$. Let $p(x)=$ $-\frac{2 x}{1-x^{2}}$. Now the Wronskian is $W(x)=c e^{-\int p(x) d x}=c e^{-\int\left(-\frac{2 x}{1-x^{2}}\right) d x}=$ $c e^{\int\left(\frac{2 x}{1-x^{2}}\right) d x}=c e^{-\ln \left(1-x^{2}\right)}=\frac{c}{1-x^{2}}$. We have used the substitution $u=1-x^{2}$ and $d u=-2 x d x$ to get $\int\left(\frac{2 x}{1-x^{2}}\right) d x=-\int \frac{d u}{u}=-\ln (u)+c=-\ln \left(1-x^{2}\right)+c$.
3. (15 pts) (Sec 3.3 Problem 20)

Solution: Rewrite the equation as $y^{\prime \prime}+\frac{2}{t} y^{\prime}+e^{t} y=0$. Let $p(t)=\frac{2}{t}$. Now the Wronskian is $W\left(y_{1}, y_{2}\right)(t)=c e^{-\int p(t) d t}=c e^{-\int \frac{2}{t} d t}=c e^{\int\left(\frac{2}{t}\right) d t}=c e^{2 \ln t}=$ $c e^{2 \ln t}=c t^{2}$. Using $W\left(y_{1}, y_{2}\right)(1)=2$, we have $W\left(y_{1}, y_{2}\right)(1)=c \cdot 1^{2}=c$. So $c=1, W W\left(y_{1}, y_{2}\right)(t)=t^{2}$ and $W\left(y_{1}, y_{2}\right)(5)=5^{2}=25$.
4. (10 pts)(Sec 3.3 Problem 24)

Solution: Suppose y_{1} and y_{2} have zero at $t=t_{0}$, then the Wronskian $W\left(t_{0}\right)=y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)=0$. By Abel Theorem, we know that $W(t)=0$ Thus y_{1} and y_{2} can't be a set of fundamental solutions.
5. (10 pts)(Sec 3.4 Problem 11)

Solution:Solving $r^{2}+6 r+13=0$, we have $r=-3 \pm 2 i$. Note that $e^{(-3+2 i) t}=e^{-3 t} e^{i 2 t}=e^{-3 t} \cos (2 t)+i e^{-3 t} \sin (2 t)$

Thus the general solution is $y(t)=c_{1} e^{-3 t} \cos (2 t)+c_{2} e^{-3 t} \sin (2 t)$.
6. (15 pts)(Sec 3.4 Problem 18)

Solution:Solving $r^{2}+4 r+5=0$, we have $r=-2 \pm i$. Note that $e^{(-2+i) t}=$ $e^{-2 t} e^{i t}=e^{-2 t} \cos (t)+i e^{-2 t} \sin (t)$.

Thus the general solution is $y(t)=c_{1} e^{-2 t} \cos (t)+c_{2} e^{-2 t} \sin (t)$.
Taking the derivative of y, we get
$y^{\prime}(t)=-2 c_{1} e^{-2 t} \cos (t)-c_{1} e^{-2 t} \sin (t)-2 c_{2} e^{-2 t} \sin (t)+c_{2} e^{-2 t} \cos (t)$
$=\left(-2 c_{1}+c_{2}\right) e^{-2 t} \cos (t)+\left(-c_{1}-2 c_{2}\right) e^{-2 t} \sin (t)$. Using $y(0)=1$ and $y^{\prime}(0)=0$,
we have $c_{1}=1$ and $-2 c_{1}+c_{2}=0$. So $c_{2}=2 c_{1}=2$. Hence $y(t)=$ $e^{-2 t} \cos (t)+2 e^{-2 t} \sin (t)$.
7. (15 pts)(Sec 3.5 Problem 12)

Solution:Solving $r^{2}-6 r+9=(r-3)^{2}=0$, we have repeated roots $r=3$.
Thus the general solution is $y(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}$.
Taking the derivative of y, we get $y^{\prime}(t)=3 c_{1} e^{3 t}+c_{2} e^{3 t}+3 c_{2} t e^{3 t}=\left(3 c_{1}+c_{2}\right) e^{3 t}+3 c_{2} t e^{3 t}$.

Using $y(0)=0$ and $y^{\prime}(0)=2$, we have $c_{1}=0$ and $3 c_{1}+c_{2}=2$. So $c_{2}=2$. Hence $y(t)=2 t e^{3 t}$.
8. (15 pts)((Sec 3.5 Problem 28))

Solution: Rewrite the equation $(x-1) y^{\prime \prime}-x y^{\prime}+y=0$ as $y^{\prime \prime}-\frac{x}{x-1} y^{\prime}+\frac{1}{x-1} y=$ 0 Let y be a solution of $(x-1) y^{\prime \prime}-x y^{\prime}+y=0$. By reduction of order, we have $\left(\frac{y}{y_{1}}\right)^{\prime}=\frac{C e^{\int \frac{x}{x-1} d x}}{\left(e^{x}\right)^{2}}=\frac{C e^{\int\left(1+\frac{1}{x-1}\right) d x}}{e^{2 x}}=\frac{C e^{(x+\ln (x-1))}}{e^{2 x}}=\frac{C e^{x}(x-1)}{e^{2 x}}=C(x-1) e^{-x}$. So $\frac{y}{y_{1}}=\int C(x-1) e^{-x}=-C x e^{-x}+D$ and $y=y_{1}\left(-C x e^{-x}+D\right)=e^{x}\left(-C x e^{-x}+\right.$ $D)=-C x+D e^{x}$. So the second independent solution is x.

