Solution to HW 9

1. (Sec 4.1 Problem 6) (15 pts) We rewrite the equation $\left(x^{2}-4\right) y^{6}(t)+$ $x^{2} y^{\prime \prime \prime}+9 y=0$ as $y^{6}(t)+\frac{x^{2}}{x^{2}-4} y^{\prime \prime \prime}+\frac{9}{x^{2}-4} y=0$. Now the function $\frac{x^{2}}{x^{2}-4}$ and $\frac{9}{x^{2}-4}$ are continuous on $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$. So the solution exists on $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$.
2. (Sec 4.2 Problem 12)(15 pts) $y^{(3)}(t)-3 y^{(2)}(t)+3 y^{\prime}(t)-y=0$.

The characteristic equation of $y^{(3)}(t)-33 y^{(2)}(t)+3 y^{\prime}(t)-y=0$ is $r^{3}-3 r^{2}+3 r-1=\left(r^{3}-1\right)-3 r(r-1)=(r-1)\left(r^{2}+r+1\right)-3 r(r-1)=$ $(r-1)\left(r^{2}+r+1-3 r\right)=(r-1)\left(r^{2}-2 r+1\right)=(r-1)^{3}=0$. So $r=3$ is a root of characteristic equation of order 3. The general solution is $y(t)=c_{1} e^{t}+c_{2} t e^{t}+c_{3} t^{2} e^{t}$.
3. (Sec 4.2 Problem 15)(25 pts) The characteristic equation of $y^{(6)}(t)+y=$ 0 is $r^{6}+1=0$. So $r^{6}=-1=e^{i(\pi+2 k \pi)}$ where k is an integer. Now $r=$ $e^{\frac{i(\pi+2 k \pi)}{6}}$ for $k=0,1,2,3,4$ and 5. So $r=e^{i\left(\frac{\pi}{6}\right)}=\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}+i \frac{1}{2}$, $r=e^{i\left(\frac{3 \pi}{6}\right)}=e^{i\left(\frac{\pi}{2}\right)}=\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)=i, r=e^{i\left(\frac{5 \pi}{6}\right)}==\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)=$ $-\frac{\sqrt{3}}{2}+i \frac{1}{2}, r=e^{i\left(\frac{7 \pi}{6}\right)}==\cos \left(\frac{7 \pi}{6}\right)+i \sin \left(\frac{7 \pi}{6}\right)=-\frac{\sqrt{3}}{2}-i \frac{1}{2}, r=e^{i\left(\frac{9 \pi}{6}\right)}==$ $\cos \left(\frac{3 \pi}{2}\right)+i \sin \left(\frac{3 \pi}{2}\right)=-i, r=e^{i\left(\frac{11 \pi}{6}\right)}==\cos \left(\frac{11 \pi}{6}\right)+i \sin \left(\frac{11 \pi}{6}\right)=\frac{\sqrt{3}}{2}-i \frac{1}{2}$. So $r=\frac{\sqrt{3}}{2} \pm i \frac{1}{2}, \pm i$ and $r=-\frac{\sqrt{3}}{2} \pm i \frac{1}{2}$. Thus the general solution is $y(t)=$ $c_{1} e^{\frac{\sqrt{3} t}{2}} \cos \left(\frac{t}{2}\right)+c_{2} e^{\frac{\sqrt{3} t}{2}} \sin \left(\frac{t}{2}\right)+c_{3} \cos (t)+c_{4} \sin (t)+c_{5} e^{\frac{-\sqrt{3} t}{2}} \cos \left(\frac{t}{2}\right)+c_{6} e^{\frac{-\sqrt{3} t}{2}} \sin \left(\frac{t}{2}\right)$.
4. (Sec 4.2 Problem 22) (20 pts) $y^{(4)}(t)+2 y^{(2)}(t)+y=0$.

The characteristic equation of $y^{(4)}(t)+2 y^{(2)}(t)+y=0$ is $r^{4}+2 r^{2}+1=$ $\left(r^{2}+1\right)^{2}$. Its roots are $r= \pm i$ with multiplicity 2 . The general solution is $y(t)=c_{1} \cos (t)+c_{2} \sin (t)+c_{3} t \cos (t)+c_{4} t \sin (t)$.
5. (Sec 4.2 Problem 29)(25 pts) $y^{\prime \prime \prime}(t)+y^{\prime}(t)=0$ with $y(0)=0, y^{\prime}(0)=1$ and $y^{\prime \prime}(0)=2$

The characteristic equation of $y^{\prime \prime \prime}(t)+y^{\prime}(t)=0$ is $r^{3}+r=r\left(r^{2}+1\right)$. Its roots are $r= \pm i$ and $r=0$ The general solution is $y(t)=c_{1} \cos (t)+$ $c_{2} \sin (t)+c_{3}$. So $y^{\prime}(t)=-c_{1} \sin (t)+c_{2} \cos (t)$ and $y^{\prime \prime}(t)=-c_{1} \cos (t)-c_{2} \sin (t)$. Using $y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=2, \cos (0)=1$ and $\sin (0)=0$, we have $c_{1}+c_{3}=0, c_{2}=1$ and $-c_{1}=2$. Hence $c_{1}=-2, c_{2}=1$ and $c_{3}=-c_{1}=2$. The solution to the IVP is $y(t)=-2 \cos (t)+\sin (t)+2$

