Solution to HW 9

- **1.** (Sec 4.1 Problem 6) (15 pts) We rewrite the equation $(x^2 4)y^6(t) + x^2y''' + 9y = 0$ as $y^6(t) + \frac{x^2}{x^2 4}y''' + \frac{9}{x^2 4}y = 0$. Now the function $\frac{x^2}{x^2 4}$ and $\frac{9}{x^2 4}$ are continuous on $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$. So the solution exists on $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$.
- **2.** (Sec 4.2 Problem 12)(15 pts) $y^{(3)}(t) 3y^{(2)}(t) + 3y'(t) y = 0$. The characteristic equation of $y^{(3)}(t) - 33y^{(2)}(t) + 3y'(t) - y = 0$ is $r^3 - 3r^2 + 3r - 1 = (r^3 - 1) - 3r(r - 1) = (r - 1)(r^2 + r + 1) - 3r(r - 1) = (r - 1)(r^2 + r + 1 - 3r) = (r - 1)(r^2 - 2r + 1) = (r - 1)^3 = 0$. So r = 3 is a root of characteristic equation of order 3. The general solution is $y(t) = c_1e^t + c_2te^t + c_3t^2e^t$.
- **3.** (Sec 4.2 Problem 15)(25 pts) The characteristic equation of $y^{(6)}(t) + y = 0$ is $r^6 + 1 = 0$. So $r^6 = -1 = e^{i(\pi + 2k\pi)}$ where k is an integer. Now $r = e^{\frac{i(\pi + 2k\pi)}{6}}$ for k = 0, 1, 2, 3, 4 and 5. So $r = e^{i(\frac{\pi}{6})} = \cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} + i\frac{1}{2}, r = e^{i(\frac{3\pi}{6})} = e^{i(\frac{\pi}{2})} = \cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2}) = i, r = e^{i(\frac{5\pi}{6})} = \cos(\frac{5\pi}{6}) + i\sin(\frac{5\pi}{6}) = -\frac{\sqrt{3}}{2} + i\frac{1}{2}, r = e^{i(\frac{7\pi}{6})} = \cos(\frac{7\pi}{6}) + i\sin(\frac{7\pi}{6}) = -\frac{\sqrt{3}}{2} i\frac{1}{2}, r = e^{i(\frac{9\pi}{6})} = \cos(\frac{3\pi}{2}) + i\sin(\frac{3\pi}{2}) = -i, r = e^{i(\frac{11\pi}{6})} = \cos(\frac{11\pi}{6}) + i\sin(\frac{11\pi}{6}) = \frac{\sqrt{3}}{2} i\frac{1}{2}.$ So $r = \frac{\sqrt{3}}{2} \pm i\frac{1}{2}, \pm i$ and $r = -\frac{\sqrt{3}}{2} \pm i\frac{1}{2}$. Thus the general solution is $y(t) = c_1e^{\frac{\sqrt{3}t}{2}}\cos(\frac{t}{2}) + c_2e^{\frac{\sqrt{3}t}{2}}\sin(\frac{t}{2}) + c_3\cos(t) + c_4\sin(t) + c_5e^{\frac{-\sqrt{3}t}{2}}\cos(\frac{t}{2}) + c_6e^{\frac{-\sqrt{3}t}{2}}\sin(\frac{t}{2}).$
- **4.** (Sec 4.2 Problem 22) (20 pts) $y^{(4)}(t) + 2y^{(2)}(t) + y = 0$. The characteristic equation of $y^{(4)}(t) + 2y^{(2)}(t) + y = 0$ is $r^4 + 2r^2 + 1 = (r^2 + 1)^2$. Its roots are $r = \pm i$ with multiplicity 2. The general solution is $y(t) = c_1 \cos(t) + c_2 \sin(t) + c_3 t \cos(t) + c_4 t \sin(t)$.
- **5.** (Sec 4.2 Problem 29)(25 pts) y'''(t) + y'(t) = 0 with y(0) = 0, y'(0) = 1 and y''(0) = 2

The characteristic equation of y'''(t) + y'(t) = 0 is $r^3 + r = r(r^2 + 1)$. Its roots are $r = \pm i$ and r = 0 The general solution is $y(t) = c_1 \cos(t) + c_2 \sin(t) + c_3$. So $y'(t) = -c_1 \sin(t) + c_2 \cos(t)$ and $y''(t) = -c_1 \cos(t) - c_2 \sin(t)$. Using y(0) = 0, y'(0) = 1, y''(0) = 2, $\cos(0) = 1$ and $\sin(0) = 0$, we have $c_1 + c_3 = 0$, $c_2 = 1$ and $-c_1 = 2$. Hence $c_1 = -2$, $c_2 = 1$ and $c_3 = -c_1 = 2$. The solution to the IVP is $y(t) = -2\cos(t) + \sin(t) + 2$

MATH 3860: page 1 of 1