Problem Set \#1
 Due: Wednesday, September 9

1. Let $N=(0, \cdots, 0,1)$ be the "north pole" and $S=-N$ the "south pole." Define stereographic projection $\sigma: S^{n} \backslash\{N\} \mapsto R^{n}$ by

$$
\sigma\left(x_{1}, \cdots, x_{n+1}\right)=\frac{\left(x_{1}, \cdots, x_{n+1}\right)}{1-x_{n+1}}
$$

Let $\bar{\sigma}(x)=\sigma(-x)$ for $x \in S^{n} \backslash\{S\}$.
(a) Show that σ is bijective, and $\sigma^{-1}\left(u_{1}, \cdots, u_{n}\right)=\frac{\left(2 u_{1}, \cdots, 2 u_{n},|u|^{2}-1\right)}{|u|^{2}+1}$.
(b) Compute the transition maps $\bar{\sigma} \circ \sigma^{-1}$ and $\sigma \circ \bar{\sigma}^{-1}$. Also verify that the atlas consisting of the two charts $\left(S^{n} \backslash\{N\}, \sigma\right)$ and ($S^{n} \backslash\{S\}, \bar{\sigma}$ defines a smooth structure on S^{n}. (The coordinates defined by σ or $\bar{\sigma}$ are called stereographic coordinates.)
(c) Show that this smooth structure is the same as the one defined in Example 1.11 (the smooth structure of S^{n} defined in class).
2. Find two coordinates charts on S^{2} which are not smoothly compatible.
3. Compute the coordinate representation for each of the following maps, using stereographic coordinates for spheres (see Problem 1); use this to conclude that each map is smooth.
(a) $A: S^{n} \mapsto S^{n}$ is the antipodal map $A(x)=-x$
(b) $F: S^{3} \mapsto S^{2} F(z, w)=(z \bar{w}+w \bar{z}, i w \bar{z}-i z \bar{w}, z \bar{z}-w \bar{w})$, where we think of S^{4} as the subset $\left\{(w, z) \mid w \in C, z \in C\right.$ and $\left.|w|^{2}+|z|^{2}=1\right\}$.
4. Let A_{1} and A_{2} be the atlases for R defined by $A_{1}=\{(R, I d)\}$, and $A_{2}=$ $\{(R, \psi)\}$, where $\psi(x)=x^{3}$. Let $f: R \mapsto R$ be any function. Determine necessary and sufficient conditions on f so that it will be
(a) a smooth map $\left(R, A_{1}\right) \mapsto\left(R, A_{2}\right)$.
(b) a smooth map $\left(R, A_{2}\right) \mapsto\left(R, A_{1}\right)$.
5. For any topological manifold M, let $C(M)$ denote the vector space of continuous functions $f: M \mapsto R$. If $F: M \mapsto N$ is a continuous map, define $F^{*}: C(N) \mapsto$ $C(M)$ by $F^{*}(f)=f \circ F$.
(a) Show that F^{*} is linear.
(b) If M and N are smooth manifolds, show that F is smooth if and only if $F^{*}\left(C^{\infty}(N)\right) \subset C^{\infty}(M)$.
(c) If $F: M \mapsto N$ is a homeomorphism between smooth manifolds, show that it is a diffeomorphism if and only if $F^{*}: C^{\infty}(N) \mapsto C^{\infty}(M)$ is an isomorphism. Thus in a certain sense the entire smooth structure of M is encoded in the space $C^{\infty}(M)$.

