Problem Set #2 Due: Monday, October 9

- 1. Prove Lemma 3.5
- **2.** Suppose M and N are smooth manifolds with M connected, and $F: M \mapsto N$ is a smooth map such that $F_*: T_pM \mapsto T_{F(p)}N$ is the zero map for each $p \in M$. Show that F is a constant map. (Hint: Show that F is locally constant by using coordinate representation of F_* .)
- **3.** Let $F: S^3 \mapsto S^2$ defined by

 $F(x_1, x_2, x_3, x_4) = (2x_1x_3 + 2x_2x_4, 2x_2x_3 - 2x_1x_4, x_1^2 + x_2^2 - x_3^2 - x_4^2).$

Find the coordinate representation of F_* near (0, 0, 0, 1) in graph coordinates.

4. Let (w, x, y, z) be the coordinates in \mathbb{R}^4 . Consider the vector fields

$$V = -x\frac{\partial}{\partial w} + w\frac{\partial}{\partial x} - z\frac{\partial}{\partial y} + y\frac{\partial}{\partial z}$$

and

$$W = -y\frac{\partial}{\partial w} + z\frac{\partial}{\partial x} + w\frac{\partial}{\partial y} - x\frac{\partial}{\partial z}.$$

- (a) Compute the Lie bracket [V, W].
- (b) Let $V|_{S^3}$ be the restriction of V to S^3 and $W|_{S^3}$ be the restriction of W to S^3 . Compute the coordinate representations of $V|_{S^3}$ in graph coordinates and stereographic coordinates. Show that V is a smooth vector field on S^3 .
- (c) Compute the Lie bracket $[V|_{S^3}, W|_{S^3}]$.