Problem Set \#2
 Due: Monday, October 9

1. Prove Lemma 3.5
2. Suppose M and N are smooth manifolds with M connected, and $F: M \mapsto N$ is a smooth map such that $F_{*}: T_{p} M \mapsto T_{F(p)} N$ is the zero map for each $p \in M$. Show that F is a constant map. (Hint: Show that F is locally constant by using coordinate representation of F_{*}.)
3. Let $F: S^{3} \mapsto S^{2}$ defined by

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(2 x_{1} x_{3}+2 x_{2} x_{4}, 2 x_{2} x_{3}-2 x_{1} x_{4}, x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}\right) .
$$

Find the coordinate representation of F_{*} near $(0,0,0,1)$ in graph coordinates.
4. Let (w, x, y, z) be the coordinates in R^{4}. Consider the vector fields

$$
V=-x \frac{\partial}{\partial w}+w \frac{\partial}{\partial x}-z \frac{\partial}{\partial y}+y \frac{\partial}{\partial z}
$$

and

$$
W=-y \frac{\partial}{\partial w}+z \frac{\partial}{\partial x}+w \frac{\partial}{\partial y}-x \frac{\partial}{\partial z} .
$$

(a) Compute the Lie bracket $[V, W]$.
(b) Let $\left.V\right|_{S^{3}}$ be the restriction of V to S^{3} and $\left.W\right|_{S^{3}}$ be the restriction of W to S^{3}. Compute the coordinate representations of $\left.V\right|_{S^{3}}$ in graph coordinates and stereographic coordinates. Show that V is a smooth vector field on S^{3}.
(c) Compute the Lie bracket $\left[\left.V\right|_{S^{3}},\left.W\right|_{S^{3}}\right]$.

