Take Home Final Exam Due: Friday, December 15

- **1.** Let $\mathbb{RP}^n := \{ \text{lines through the origin in } \mathbb{R}^{n+1} \}$. For $p \neq 0$ in \mathbb{R}^{n+1} , let [p] be the line through p and 0.
 - (a) Consider the map $F : \mathbb{R}^3 \to \mathbb{R}^4$ given by $F(x, y, z) := (x^2 y^2, xy, xz, yz)$. Prove that this induces a smooth map $f : \mathbb{RP}^2 \to \mathbb{R}^4$ given by f([p]) :=F(p) for $p \in S^2$. (Hint: The function $\pi: S^n \to \mathbb{RP}^n, p \mapsto [p]$ is smooth covering map.)
 - (b) Prove that $f : \mathbb{RP}^2 \to \mathbb{R}^4$ is injective. Prove that $f_* : T_{[p]}\mathbb{RP}^2 \to \mathbb{R}^4$ is injective.
 - (c) Prove that f is a homeomorphism onto its image (f is called the Veronese embedding of \mathbb{RP}^2 in \mathbb{R}^4).
- **2.** Let M(n, R) be the space of $n \times n$ matrices (with real entries). Let $F: M(n) \mapsto R$ be defined by F(A) = det(A)
 - (a) Recall that the classical adjoint of $A \in M(n, R)$ is defined by $(adjA)_{ij} =$ $(-1)^{i+j} det A(j|i)$ where $A(j|i) \in M(n-1,R)$ is obtained by removing the j-th row and i-th column from A. Prove that the pushforward of F at $A \in M(n, R)$ is given by
 - $(F_*)_A(B) = Tr((adjA)B).$ (Hint: Compute $\frac{d}{dt}|_{t=0}f(A+tB)).$ (b) Show that 0 is the only critical value of $F : M(n,R) \mapsto R.$ (Hint: $A(adjA) = (detA)I_n$, where $I_n \in M(n, R)$ is the identity matrix.)
 - (c) Let $SL(n,R) = \{A \in M(n,R) | det A = 1\} = F^{-1}(1)$. By (b), SL(n,R)is an $n^2 - 1$ dimensional submanifold of M(n, R). Describe $T_{I_n}(SL(n, R))$ (the tangent space of SL(n, R) at the identify matrix I_n) explicitly as a linear subspace of M(n, R).
- **3.** Let $O(n) = \{A \in M(n,R) | A^t A = I_n\}$ We have seen that O(n) is an $\frac{n(n-1)}{2}$ dimensional submanifold of M(n, R). Show that

$$T_{I_n}(O(n)) = \{ A \in M(n, R) | A + A^t = 0 \}.$$

- **4.** The Heisenberg group, named after Werner Heisenberg, is a group of 3×3 upper triangular matrices of the form
 - $\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}.$
 - (a) Prove that the Heisenberg group is a Lie group.
 - (b) Find a basis for left-invariant vector fields on the Heisenberg group.
 - (c) Suppose $\{X_1, X_2, X_3\}$ is the basis of left-invariant vector fields you find in (b). Compute $[X_1, X_2]$, $[X_1, X_3]$ and $[X_2, X_3]$.
 - (d) Find a basis for right invariant vector fields the Heisenberg group.

Differential Geometry I: page 1 of 2

- **5.** Let \mathfrak{g} be a Lie algebra. A linear subspace $\mathfrak{h} \subset \mathfrak{g}$ is called an ideal in \mathfrak{g} if every $X \in \mathfrak{h}$ and $Y \in \mathfrak{g}$, $[X, Y] \in \mathfrak{h}$.
 - (a) If \mathfrak{h} is an ideal in \mathfrak{g} , show that the quotient space $\mathfrak{g}/\mathfrak{h}$ has a unique Lie algebra structure such that the projection $\pi : \mathfrak{g} \mapsto \mathfrak{g}/\mathfrak{h}$ ia a Lie algebra homomorphism.
 - (b) Show that a subspace $\mathfrak{h} \subset \mathfrak{g}$ is an ideal if and only if it is the kernel of a Lie algebra homomorphism.
- **6.** Show that a connected Lie group G is Abelian if and only if the Lie bracket on its Lie algebra \mathfrak{g} is zero.