Solution to HW 12

(1) (10 pts) Sec 12.3 Problem 16

A screening test for a disease shows a positive result in 92% of all cases when the disease is actually present and in 7% of all cases when it is not. Assume that the prevalence of the disease is 1 in 600. If the test is administered to a randomly chosen individual, what is the probability that the result is positive?
Solution: Let A be the event that the test is positive, B_{1} be the event that a person is infected and B_{2} be the event that a person is not infected. From the condition that the prevalence of the disease is 1 in 600, we have $P\left(B_{1}\right)=\frac{1}{600}$ and $P\left(B_{2}\right)=1-P\left(B_{1}\right)=1-\frac{1}{600}=\frac{599}{600}$. From the condition that a positive result in 92% of all cases when the disease is actually present, we have $P\left(A \mid B_{1}\right)=\frac{92}{100}$. From the condition that a positive result in 7% of all cases when the disease is not present, we have $P\left(A \mid B_{2}\right)=\frac{7}{100}$. Since B_{1} and B_{2} is a partition, we have $P(A)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)=\frac{92}{100} \cdot \frac{1}{600}+\frac{7}{100} \cdot \frac{599}{600}=\frac{92+7.599}{60000}=$ $\frac{4285}{60000} \cong 0.07141666666$. So the probability that the result is positive is about 0.07141666666 .
(2) (10 pts) Sec 12.3 Problem 18

A screening test for a disease shows a positive test result in 95% of all cases when the disease is actually present and in 20% of all cases when it is not. When the test was administered to a large number of people, 21.5% of the results were positive. What is the prevalence of the disease?
Solution: Let A be the event that the test is positive, B_{1} be the event that a person is infected and B_{2} be the event that a person is not infected. Assume $P\left(B_{1}\right)=P / 100$ and $P\left(B_{2}\right)=(100-P) / 100$. From the condition that a screening test for a disease shows a positive test result in 95% of all cases when the disease is actually present, we have $P\left(A \mid B_{1}\right)=\frac{95}{100}$. From the condition that a screening test for a disease shows a positive test result in 20% of all cases when the disease is not present, we have $P\left(A \mid B_{2}\right)=\frac{20}{100}$. From the condition that 21.5% of the results were positive, we have $P(A)=\frac{21.5}{100}$. Since B_{1} and B_{2} form a partition, we have
$P(A)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)$. Using $P(A)=\frac{21.5}{100}, P\left(A \mid B_{1}\right)=\frac{95}{100}$, $P\left(B_{1}\right)=P / 100, P\left(A \mid B_{2}\right)=\frac{20}{100}$ and $P\left(B_{2}\right)=(100-P) / 100$, we have
$\frac{21.5}{100}=\frac{95}{100} \cdot \frac{P}{100}+\frac{20}{100} \cdot \frac{100-P}{100}$,
$\frac{21.5}{100}=\frac{95 P+2000-20 P}{10000}$,
$2150=75 P+2000$ and $150=75 P$. Thus $P=2$. So the prevalence of the disease is 1 in 50 (which is $2 / 100=1 / 50$).
(3) (20 pts) A screening test for a disease shows a positive result in 95% of all cases when the disease is actually present and in 10% of all cases when it is not. Assume that the prevalence of the disease in the population is $1 / 50$.
(a) Find the probability that person has the disease when the test is positive.
Solution: Let A be the event that the test is positive, B_{1} be the event that a person is infected and B_{2} be the event that a person is not infected. From the conditions given by the problems, we have $P\left(A \mid B_{1}\right)=\frac{95}{100}, P\left(A \mid B_{2}\right)=\frac{10}{100}$ and $P\left(B_{1}\right)=\frac{1}{50}$. Since B_{1} and B_{2} form a partition, we have $P\left(B_{1}\right)+P\left(B_{2}\right)=1$, Using $P\left(B_{2}\right)=$ $1-P\left(B_{1}\right)=1-\frac{1}{50}=\frac{49}{50}$. From the Bayes formula, we have $P\left(B_{1} \mid A\right)=\frac{P\left(A \mid B_{1}\right) P\left(B_{1}\right)}{P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)}=\frac{\frac{95}{100} \cdot \frac{1}{50}}{\frac{95}{100} \cdot \frac{1}{50}+\frac{10}{100} \cdot \frac{49}{50}}=\frac{95}{95+10 \cdot 49}=\frac{95}{95+490}=$ $\frac{95}{495} \cong 0.19192$ So the probability that person has the disease when the test is positive is about 0.19192 .
(b) Find the probability that person has the disease when the test is negative.
Solution: In this problem, we want to find $P\left(B_{1} \mid A^{c}\right)$ which can be found by the Bayes formula, we have
$P\left(B_{1} \mid A^{c}\right)=\frac{P\left(A^{c} \mid B_{1}\right) P\left(B_{1}\right)}{P\left(A^{c} \mid B_{1}\right) P\left(B_{1}\right)+P\left(A^{c} \mid B_{2}\right) P\left(B_{2}\right)}=\frac{\frac{5}{10} \cdot \frac{1}{50}}{\frac{5}{100} \cdot \frac{1}{50}+\frac{90}{100} \cdot \frac{49}{50}}=\frac{5}{5+90 \cdot 49}=\frac{5}{5+4410}=$ $\frac{5}{4415} \cong 0.0011325$ So the probability that person has the disease when the test is negative is about 0.0011325 .
(c) Find the probability that person doesn't have the disease when the test is negative.
Solution: In this problem, we want to find $P\left(B_{2} \mid A^{c}\right)$ which can be found by the Bayes formula, we have
$P\left(B_{2} \mid A^{c}\right)=\frac{P\left(A^{c} \mid B_{2}\right) P\left(B_{2}\right)}{P\left(A^{c} \mid B_{1}\right) P\left(B_{1}\right)+P\left(A^{c} \mid B_{2}\right) P\left(B_{2}\right)}=\frac{\frac{90}{100} \cdot \frac{49}{50}}{\frac{5}{100} \cdot \frac{1}{50}+\frac{90}{100} \cdot \frac{49}{50}}=\frac{5}{5+90 \cdot 49}=\frac{4410}{5+4410}=$ $\frac{4410}{4415} \cong 0.99887$ So the probability that person has the disease when the test is negative is about 0.99887 .
(4) (10 pts) Sec 12.4 Problem 2

Toss a fair coin four times. Let X be the random variable that counts the number of heads. Find the probability mass function describing the distribution of X.
Solution: The sample space is
$\Omega=\{T T T T$, HTTT, THTT, TTHT, TTT H, H HTT, HTHT, HTTH, THHT, THTH, TTHH, THHH, HTHH, НHTH, НHHT, НHHH\}. We have $|\Omega|=16$. Since $\{x \mid X(x)=0\}=\{T T T T\}$, we have $P(X=0)=\frac{1}{16}$.

Since $\{x \mid X(x)=1\}=\{H T T T, T H T T, T T H T, T T T H\}$, we have $P(X=$

1) $=\frac{4}{16}$. Since $\{x \mid X(x)=2\}=\{H H T T$, HTHT, HTTH, THHT, THTH,TTHH $\}$,
we have $P(X=2)=\frac{6}{16}$. Since $\{x \mid X(x)=3\}=\{$ THH H, HTH H, HHTH, H H HT $\}$, we have $P(X=3)=\frac{4}{16}$. Since $\{x \mid X(x)=4\}=\{H H H H\}$, we have $P(X=4)=\frac{1}{16}$.
(5) (10 pts) Sec 12.4 Problem 10

Suppose the probability mass function of a discrete random variable X is given by the following table:

$$
\begin{array}{rl}
x & P(X=x) \\
-1 & 0.2 \\
-0.5 & 0.25 \\
0.1 & 0.1 \\
0.5 & 0.1 \\
1 & 0.35
\end{array}
$$

Find and graph the corresponding distribution function $F(x)$.
Solution: The distribution function id

$$
\begin{array}{rl}
F(x)= \\
0 & x<-1 \\
0.2 & -1 \leq x<-0.5 \\
0.45 & -0.5 \leq x<0.1 \\
0.55 & 0.1 \leq x<0.5 \\
0.65 & 0.5 \leq x<1 \\
1 & 1 \leq x
\end{array}
$$

(6) (10 pts) Sec 12.4 Problem 12

Let X be a random variable with distribution function

$$
\begin{array}{rl}
F(x)= \\
0 & x<0 \\
0.05 & 0 \leq x<1.3 \\
0.30 & 1.3 \leq x<1.7 \\
0.85 & 1.7 \leq x<1.9 \\
0.90 & 1.9 \leq x<2 \\
1.0 & 2 \leq x
\end{array}
$$

Determine the probability mass function of X.
Solution:

$$
\begin{array}{rl}
P(x) & = \\
0.05 & x=0 \\
0.25 & x=1.3 \\
0.55 & x=1.7 \\
0.35 & x=1.9 \\
0.1 & x=2
\end{array}
$$

(7) (15 pts) Sec 12.4 Problem 16

The following table contains the per plant in a sample of size 30:

15	27	13	2	0	16
26	0	2	1	17	15
21	13	5	0	19	25
12	11	0	16	22	1
12	11	0	16	22	1

(a) Find the relative frequency distribution.

Solution: The relative frequency distribution is

number of aphids	15	27	13	2	0	16	26	1	17
relative frequency	$2 / 30$	$1 / 30$	$2 / 30$	$2 / 30$	$6 / 30$	$2 / 30$	$1 / 30$	$3 / 30$	$2 / 30$
number of aphids	21	5	19	25	12	11	22	28	9
relative frequency	$1 / 30$	$1 / 30$	$1 / 30$	$1 / 30$	$1 / 30$	$1 / 30$	$1 / 30$	$1 / 30$	$1 / 30$

(b) Compute the average value by (i) averaging the values in the table directly and (ii) using the relative frequency distribution obtained in (a)

Solution: (i) You should get $\frac{334}{30} \cong 11.13333$.
(ii) The average value is $(2 / 30) \cdot 15+(1 / 30) \cdot 27+(2 / 30) \cdot 13+(2 / 30) \cdot 2+(6 / 30)$.
$0+(2 / 30) \cdot 16+(1 / 30) \cdot 26+(3 / 30) \cdot 1+(2 / 30) \cdot 17+(1 / 30) \cdot 21+(1 / 30) \cdot 5+(1 / 30)$. $19+(1 / 30) \cdot 25+(1 / 30) \cdot 12+(1 / 30) \cdot 11+(1 / 30) \cdot 22+(1 / 30) \cdot 28+(1 / 30) \cdot 9=$ $\frac{334}{30} \cong 11.13333$
(8) (15 pts) Sec 12.4 Problem 20

Suppose that the probability mass function of a discrete random variable X is given by the following table:

$$
\begin{array}{ll}
x & P(X=x) \\
0 & 0.3 \\
1 & 0.3 \\
2 & 0.1 \\
3 & 0.1 \\
4 & 0.2
\end{array}
$$

(a) Find $E(X)$.

Solution: $E(X)=\sum_{x} x P(X=x)=0 \cdot P(X=0)+1 \cdot P(X=1)+2 \cdot P(X=$
2) $+3 \cdot P(X=3)+4 \cdot P(X=4)$
$=0 \cdot 0.3+1 \cdot 0.3+2 \cdot 0.1+3 \cdot 0.1+4 \cdot 0.2$
$=0.3+0.2+0.3+0.8=1.6$.
(b) Find $E\left(X^{2}\right)$.

Solution: $E\left(X^{2}\right)=\sum_{x} x^{2} P(X=x)=0^{2} \cdot P(X=0)+1^{2} \cdot P(X=1)+2^{2}$.
$P(X=2)+3^{2} \cdot P(X=3)+4^{2} \cdot P(X=4)$
$=0 \cdot 0.3+1 \cdot 0.3+4 \cdot 0.1+9 \cdot 0.1+16 \cdot 0.2$
$=0.3+0.4+0.9+3.2=4.8$.
(c) Find $E(2 X-1)$.

Solution: $E(2 X-1)=\sum_{x}(2 x-1) P(X=x)=(2 \cdot 0-1) \cdot P(X=0)+(2 \cdot 1-$ 1) $P(X=1)+(2 \cdot 2-1) P(X=2)+(2 \cdot 3-1) P(X=3)+(2 \cdot 4-1) P(X=4)$
$=(-1) \cdot 0.3+1 \cdot 0.3+3 \cdot 0.1+5 \cdot 0.1+7 \cdot 0.2$
$=-0.3+0.3+0.3+0.5+1.4=2.2$.

