Problem Set \#2

Due: Wednesday, January 25
(1) If $f: S^{n} \mapsto S^{n}$ is a continuous map such that $f(P) \neq P$ for all $P \in S^{n}$, show that f is homotopic to the antipodal map.
(2) If $f: S^{n} \mapsto S^{n}$ is a continuous map such that $f(P) \neq-P$ for all $P \in S^{n}$, show that f is homotopic to the identity map.
(3) For two continuous maps $f, g: X \mapsto S^{n}$ such that $f(x) \neq-g(x)$ for all $x \in S^{n}$, show that $f \simeq g$.
(4) Show that the map from S^{2} to itself that takes (x, y, z) to to $(x, y,-z)$ is homotopic to the identity map, and the map that takes (x, y, z) to $(-x,-y, z)$ is homotopic to the antipodal mapping.

Note that the correction to Chapter 7 of "Introduction to Topological Manifolds" was given last time

