Problem Set #5 Due: Wednesday, Feb. 15

- **1.** Let $D^2 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \leq 1\}$. Prove that the closed unit disk D^2 in \mathbb{R}^2 cannot be retracted to the unit circle S^1 .
- **2.** Use previous problem to deduce that any continuous map $f : D \mapsto D$ has a fixed point. (*Hint:* Prove it by contradiction. Consider the line joining x to f(x) where $x \in D$.)
- 3. (a) The space G is a topological group meaning that G is a group and also a Hausdorff topological space such that the multiplication and map taking each element to its inverse are continuous operations. Given two loops based at the identity e in G, say $\alpha(s)$ and $\beta(s)$, we have two ways to combine them: $\alpha \cdot \beta$ (product of loops as in the definition of fundamental group) and secondly $\alpha\beta$ using the group multiplication. Show, however, that these constructions give homotopic loops.
 - (b) Show that the fundamental group of a path-connected topological group is abelian. (Hint: Show that $\alpha\beta \sim \beta\alpha$. You may want to use the hint at problem 8-3 on page 191 of the textbook.)
- 4. Show that the following are equivalent:
 - (a) X is contractible.
 - (b) X is homotopy equivalent to a one-point space.
 - (c) Any point of X is a deformation retract of X.
- 5. Determine the fundamental group of the Möbius band.