Problem Set \#6

Due: Wednesday, Feb. 22

1. Let $\phi: S^{1} \mapsto S^{1}$ be a continuous map such that $\phi(1)=1$. (Here we use the complex number notation. We identify S^{1} as the image of $e^{i \theta}$.) Because $\pi_{1}\left(S^{1}, 1\right)$ is infinite cyclic, there is an integer n, called the degree of ϕ and denoted by $\operatorname{deg}(\phi)$, such that $\phi(\gamma)=\gamma^{n}$ for all $\gamma \in \pi_{1}\left(S^{1}, 1\right)$. If $\phi: S^{1} \mapsto S^{1}$ is an arbitrary continuous map, we define the degree of ϕ to be the degree of $\frac{\phi}{\phi(1)}$ (in complex notation), which takes 1 to 1 .
(a) Show that two maps $\phi, \psi: S^{1} \mapsto S^{1}$ are homotopic if and only if they have the same degree.
(b) Show that $\operatorname{deg}(\phi \circ \psi)=\operatorname{deg}(\phi) \cdot \operatorname{deg}(\psi)$ for any two continuous maps ϕ, $\psi: S^{1} \mapsto S^{1}$.
(c) For each $n \in Z$, compute the degrees of the nth power map $p_{n}(z)=z^{n}$ and its conjugate $\bar{p}_{n}(z)=\bar{z}^{n}$.
(d) Show that $\phi: S^{1} \mapsto S^{1}$ has an extension to a continuous map $\Phi: D^{2} \mapsto S^{1}$ if and only if it has degree zero.
2. Prove the fundamental theorem of algebra: Every complex polynomial of positive degree has a zero. [Hint: If $p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$, write $p_{\epsilon}(z)=\epsilon^{n} p\left(\frac{z}{\epsilon}\right)$ and show that there exists $\epsilon>0$ such that $\left|p_{\epsilon}(z)-z^{n}\right|<1$ when $z \in S^{1}$. If p has no zeros, prove that $\left.p_{\epsilon}\right|_{S^{1}}$ is homotopic to $p_{n}(z)=z^{n}$, and use the results of previous problem to derive a contradiction.]
3. Consider the group of 2×2 real matrices with nonzero determinant

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

By identifying these matrices with a subset of \mathbf{R}^{4} using the four entries, we can make this into a topological space. This space is denoted $G L(2, \mathbf{R})$ and is called the general linear group of 2×2 real matrices. Let $O(2) \subset G L(2, \mathbf{R})$ be the subgroup of the orthogonal matrices Q satisfying $Q Q^{t}=Q^{t} Q=I$.
(a) Use the Gram-Schmidt orthogonalization process which writes a given element A in $G L(2, \mathbf{R})$ uniquely as a product $A=Q R$, where $Q \in O(2)$ and R is an upper triangular matrix with positive diagonal entries to show that there is a deformation retraction of $G L(2, \mathbf{R})$ onto $O(2)$.
(b) Let $S O(2)$ denote the matrices in $O(2)$ with determinant 1. Show that there is a homeomorphism (but not a group isomorphism) between $O(2)$ and the prodcut space $S O(2) \times \mathbf{Z}_{2}$.
(c) Show that $S O(2)$ is homeomorphic to S^{1}, and this homeomorphism is a group homomorphism.
(d) Compute the fundamental groups $\pi_{1}\left(S O(2), I_{2}\right), \pi_{1}\left(O(2), I_{2}\right)$ and $\pi_{1}\left(G L(2, \mathbf{R}), I_{2}\right)$ where I_{2} is the identity matrix.

