Problem Set #7
Due: Wednesday, Mar. 15

1. If M is a connected manifold of dimension at least 3 and $q \in M$, show that
 \[\pi_1(M \setminus \{q\}) = \pi_1(M) \]
2. If M and M' are connected n-manifolds, $n \geq 3$, prove that
 \[\pi_1(M_1 \# M_2) \simeq \pi_1(M_1) \ast \pi_1(M_2) \]
3. Let X be the union of the unit sphere in 3-space with the unit disk in the $x-y$ plane, i.e.
 \[X = \{(x, y, z) | x^2 + y^2 + z^2 = 1 \text{ or } x^2 + y^2 \leq 1\} \]
 Find $\pi_1(X)$.
4. What is the fundamental group of a closed disk with two points removed?
5. What is the fundamental group of the torus with one point removed?