Problem Set \#7

Due: Wednesday, Mar. 15

1. If M is a connected manifold of dimension at least 3 and $q \in M$, show that $\pi_{1}(M \backslash\{q\})=\pi_{1}(M)$.
2. If M and M are connected n-manifolds, $n \geq 3$, prove that

$$
\pi_{1}\left(M_{1} \sharp M_{2}\right) \simeq \pi_{1}\left(M_{1}\right) * \pi_{1}\left(M_{2}\right) .
$$

3. Let X be the union of the unit sphere in 3 -space with the unit disk in the $x-y$ plane, i.e. $X=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right.$ or $\left.x^{2}+y^{2} \leq 1\right\}$. Find $\pi_{1}(X)$.
4. What is the fundamental group of a closed disk with two points removed?
5. What is the fundamental group of the torus with one point removed?
