M.S. Comprehensive Examination
Spring 2002

Instructions:

1. If you think that there is a mistake ask the proctor. If the proctor’s explanation is not satisfactory, interpret the problem as you see fit, but not in such a way that the answer is trivial.

2. From each part solve 3 of 5 problems.

3. If you solve more than three problems from a part, indicate the problems that you wish to have graded.

Part A

1. Consider the system

\[\begin{align*}
\dot{x} &= \sin(t)y \\
\dot{y} &= -\cos(t)x
\end{align*} \]

Suppose a solution \(u(t) = (x(t), y(t)) \) has initial values \(u(0) = u_0 = (0, 1) \). Use the Fundamental Inequality to show that for \(0 \leq t \leq \pi \)

\[||u(t) - u_0|| \leq \frac{1}{2}(1 - \sqrt{2} \cos(t - \pi/4)) \]

2. Consider the system \(\dot{x} = (1 - x^2)a(t) \) for a continuous function \(a(t) \). What condition on \(a(t) \) implies that the solution \(x(t) = 1 \) is Lyapunov stable. What condition implies that \(x(t) = 1 \) is asymptotically stable. Find an \(a(t) \) so that \(x(t) = 1 \) is uniformly asymptotically stable.

3. Consider the system

\[\begin{align*}
\dot{x} &= -1 - x^2 + z^2 \\
\dot{y} &= 1 - y^2 + x^2 \\
\dot{z} &= 3 - 4xy - 3z^2.
\end{align*} \]

Find the stationary points and determine which are asymptotically stable.
4. Show that the unit circle is a limit cycle for the following equation

\[
\begin{bmatrix}
\dot{x} \\
\dot{y}
\end{bmatrix} = \begin{bmatrix}
(1 - r^2)x & -r^2y \\
r^2x & + (1 - r^2)y
\end{bmatrix},
\]

where \(r = \sqrt{x^2 + y^2} \).

5. Find the fundamental solution of the system

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{bmatrix} = \begin{bmatrix}
3x & +4z \\
2x & +3z \\
-2x & +y & -2z
\end{bmatrix}.
\]

Part B

1.

(a) Solve the Cauchy problem \(u_x + \frac{1}{u} u_y = u^2 \) with the initial conditions \(u(x, 1) = 1 \)

(b) What condition on the initial data guarantees the existence of a solution in a neighborhood of the initial curve. Is this condition satisfied in this problem?

2. Find the canonical form and the general solution of the equation

\[
2xu_{xx} + 2(1 + xy)u_{xy} + 2yu_{yy} + \frac{2(1-x)}{1-xy}u_x + \frac{2(1-y)}{1-xy}u_y = 0.
\]

3.

(a) Find the solutions to the Dirichlet problem \(\triangle u + 5u = 0 \) and \(u_{\partial R} = 0 \) where \(R = \{(x, y)|0 < x < \pi, 0 < y < \pi\} \)

(b) What property of solutions to the Laplace equation on \(R \) is not shared with solutions to this equation. What feature of this equations causes this property to fail.
4. Let A be a 2×2 matrix that has the real Jordan form \[
\begin{bmatrix}
c & 1 \\
0 & c
\end{bmatrix}.
\] For $u(x, y) = \begin{bmatrix} u_1(x, y) \\ u_2(x, y) \end{bmatrix}$ describe the general solution to the Cauchy-Kowalewski system

\[
\frac{\partial}{\partial x} u(x, y) = A \frac{\partial}{\partial y} u(x, y).
\]

5. Describe the symbol of the minimal surface equation

\[
(1 + u_y^2)u_{xx} - 2u_xu_yu_{xy} + (1 + u_x^2)u_{yy} = 0
\]

and show that it is elliptic.