1. If \(\{s_n\} \) is a complex sequence, define its arithmetic means by
\[
\sigma_n = \frac{s_0 + s_1 + \cdots + s_n}{n + 1} \quad (n = 0, 1, 2, \ldots).
\]
If \(\lim s_n = s \), prove that \(\lim \sigma_n = s \).

2. Suppose that \(f \) is a real function defined on \(\mathbb{R}^1 \) which satisfies
\[
\lim_{h \to 0} [f(x + h) - f(x - h)] = 0
\]
for every \(x \in \mathbb{R}^1 \). Does this imply that \(f \) is continuous?

3. Suppose that \(f : X \to Y \) is a mapping between metric spaces \((X, d)\) and \((Y, \delta)\).

 (a) State the definition of uniform continuity of \(f \) in this setting.

 (b) Suppose that \(f \) is continuous and that \((X, d)\) is compact. Show that \(f \) is uniformly continuous.

4. Let \(X \) be an infinite set. For \(p, q \in X \), define
\[
d(p, q) = \begin{cases}
1 & \text{if } p \neq q \\
0 & \text{if } p = q
\end{cases}
\]
Prove that this is a metric. What subsets of the resulting metric space are open? Which are closed? Which are compact?

5. Prove that the series
\[
\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2}
\]
converges uniformly in every bounded interval, but does not converge absolutely for any value of \(x \).

6. Define
\[
f(x) = \begin{cases}
e^{-1/\sqrt{x}} & \text{if } x \neq 0 \\
0 & \text{if } x = 0
\end{cases}
\]
Prove that \(f \) has derivatives of all orders at \(x = 0 \), and that \(f^{(n)}(0) = 0 \) for \(n = 1, 2, 3, \ldots \).
7. Let $f : [0, 1] \rightarrow \mathbb{R}$ be defined by

$$f(x) = \begin{cases}
0 & \text{if } x \text{ is rational} \\
x & \text{if } x \text{ is not rational}
\end{cases}$$

Determine whether or not f is Riemann integrable on $[0,1]$. If it is then evaluate $\int_0^1 f(x) \, dx$.

Part B: Complex Analysis

Instructions: Do at least 2 questions from Part B

1. Compute all possible Laurent series at $z = 0$ for the function.

$$f(z) = \frac{1}{z^2 - z - 2}$$

Specify the domain of convergence of each series.

2. Let $u(x, y) = x^3 + 2xy - 3xy^2$.

 (a) Show that u is harmonic.
 (b) Find all harmonic conjugates of u.
 (c) Find an analytic function $f(z)$ so that $u(x, y) = \Re f(x + iy)$.

3. Use the residue theorem to evaluate $\int_0^\infty \frac{1}{(x^2 + 4)^2} \, dx$