To get full credit you must show all your work.
This exam contains 6 real analysis and 6 complex variables questions.

Real Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. (a) Define the supremum of a bounded set $A \subset \mathbb{R}$.
 (b) Let A and B be bounded subsets of real numbers. Show that
 \[
 \sup(A \cup B) = \max\{\sup A, \sup B\}.
 \]

2. Let $f : [0, 1] \to \mathbb{R}$ be a continuous function such that $\int_a^b f(x)dx = 0$ for all $0 \leq a \leq b \leq 1$. Show that $f = 0$.

3. (a) Define uniformly continuous functions on \mathbb{R}.
 (b) Show that $f : (0, 1) \to \mathbb{R}$ defined by $f(x) = \sin(1/x)$ is not uniformly continuous.
 (c) Show that $g : (0, 1) \to \mathbb{R}$ defined by $g(x) = x \sin(1/x)$ is uniformly continuous on $(0, 1)$.

4. Prove the root test for series.
 (a) Show that if $\lim_{n \to \infty} |a_n|^{1/n} < 1$, then $\sum_{n=1}^{\infty} a_n$ is convergent.
 (b) Give two examples of series $\sum_{n=1}^{\infty} c_n$ and $\sum_{n=1}^{\infty} d_n$ so that
 \[
 \lim_{n \to \infty} |c_n|^{1/n} = \lim_{n \to \infty} |d_n|^{1/n} = 1
 \]
 yet $\sum_{n=1}^{\infty} c_n$ is convergent while $\sum_{n=1}^{\infty} d_n$ is divergent.
5. Let \(f : [0, 1] \to [0, 1] \) be continuous. Show that there exists \(c \in [0, 1] \) such that \(f(c) = c \).

6. (a) Define compact subset of real numbers.
 (b) Let \(S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \cup \{0\} \). Using the definition of compactness to prove that \(S \) is a compact set.
 (c) Is \(\left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \) compact? Prove your assertion.

Complex Analysis

100\% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. Find the image of line \(y = x \) under the mapping \(f(z) = z^2 - 1 \).
2. Let \(C \) denote the unit circle with counter-clockwise orientation. Compute the integral
 \[\oint_C \frac{e^{z^2}}{z^2} dz. \]
3. Expand \(f(z) = \frac{z^2}{(z+1)(z^2-1)} \) in a Laurent series valid for \(\{ z \in \mathbb{C} : 0 < |z-1| < 2 \} \).
4. Evaluate the integral \(\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + 1)^2(x^2 + 2x + 2)}. \)
5. Evaluate the line integral \(\int_C z^{1/2} dz \) where \(C \) is the positively oriented semicircular curve \(z = e^{i\theta} \) for \(-\pi/2 \leq \theta \leq \pi/2\) and \(z^{1/2} \) is defined with the standard branch cut \(|\text{Arg}(z)| < \pi \).
6. Let \(u \) and \(v \) be real valued functions continuously differentiable functions on a domain \(\Omega \). Assume that \(u \) is harmonic conjugate of \(v \) and \(v \) is harmonic conjugate of \(u \) on \(\Omega \). Show that both \(u \) and \(v \) are constant functions.