Do two problems from each of the three sections. Give complete proofs — do not just quote a theorem. Please indicate clearly which six problems you want graded.

Part I: Group theory

1. If G is a group and H is a subgroup of G of index n, show that G contains a normal subgroup K whose index in G divides $n!$.

2. (a) If G is a group which contains only a finite number or subgroups, show that G is finite.
 (b) Describe all groups G which containing no proper subgroups.
 (c) Describe all groups G which contain exactly one proper non-trivial subgroup.

3. Let G be a finite p-group and let H be a normal subgroup of G of order p. Show that H is contained in the center of G.

Part II: Ring theory

4. Let \mathbb{Z}_3 be the field with 3 elements. Find all monic irreducible polynomials of degree 3 in the ring $\mathbb{Z}_3[x]$.

5. Let \mathbb{Z} be the ring of integers, p a prime in \mathbb{Z}, and \mathbb{Z}_p, the field of p elements. Let x be an indeterminate, and set
 \[R_1 = \mathbb{Z}_p[x]/(x^2 - 2), \quad R_2 = \mathbb{Z}_p[x]/(x^2 - 3). \]
 Determine whether the rings R_1 and R_2 are isomorphic in each of the following cases: $p = 2, 5, 11$.

6. Let \mathbb{F} be field, and let R be the subset of 2×2 matrices over \mathbb{F} which commute with the matrix
 \[
 \begin{pmatrix}
 0 & 1 \\
 0 & 0
 \end{pmatrix}.

 (a) Prove the R is a commutative ring.
 (b) Prove that $R \cong \mathbb{F}[x]/I$, where I is the ideal of $\mathbb{F}[x]$ generated by x^2.

Part III: Linear algebra

7. Consider the 4×4 real matrix
 \[
 A = \begin{pmatrix}
 2 & 1 & -1 & 2 \\
 0 & 2 & 1 & 1 \\
 0 & 0 & 2 & 1 \\
 0 & 0 & 0 & 3
 \end{pmatrix}

 (a) Find J, the Jordan canonical form of A.
 (b) Find an invertible matrix P so that $AP = PJ$.

8. (a) Let V and W be vector spaces over a field \mathbb{F}, and let T be a linear operator from V into W. Suppose that V is finite-dimensional. Prove $\text{rank}(T) + \text{nullity}(T) = \dim(V)$.

(b) Let S be the linear operator defined on the space of 3×3 real matrices given by

$$S(A) = A - A^t,$$

where A^t denotes the transpose of the matrix A. Determine $\text{rank}(S)$.

9. Let A be a 3×3 matrix over the field \mathbb{R} of real numbers and suppose that $\text{tr}(A) = 6$, $\text{tr}(A^2) = 14$ and $\text{det}(A) = 6$. Here $\text{tr}(A)$ and $\text{det}(A)$ denote the trace and determinant of A. Prove that A is similar to the diagonal matrix

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{pmatrix}.$$