Part I: Group theory

1. Let G be a finite abelian group and let z be the product of all of the elements in G.

 (a) Prove that $z^2 = 1$.

 (b) Give an example of $G
eq 1$ where $z = 1$.

 (c) Give an example of G where $z
eq 1$.

2. In this problem G is always a finite group.

 (a) Show that if the order of G satisfies $|G| = p^n$ where p is a prime integer and n a positive integer, then the center $Z(G)$ is non-trivial.

 (b) Show that if the order of G satisfies $|G| = pq$ where p and q are distinct primes, then G cannot be a simple group (i.e., G must contain a non-trivial normal subgroup).

Part II: Ring theory

3. Let R be a commutative ring with an identity element. Under addition R is, of course, an abelian group. Suppose that each subgroup of this group is, in fact, an ideal of R. Show that the ring R is isomorphic to the ring of integers \mathbb{Z}, or to the integers modulo n, for some integer n.

4. Recall that an ideal P in a commutative ring R is prime if, whenever $x, y \in R$ are such that $xy \in P$, then either $x \in P$ or $y \in P$ (or possibly both).

 Let \mathbb{Q} be the field of rational numbers, \mathbb{Z} be the ring of integers, with $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$ the corresponding polynomial rings.

 (a) Show that in $\mathbb{Q}[x]$ every prime ideal is a maximal ideal.

 (b) Exhibit a prime ideal in $\mathbb{Z}[x]$ that is not maximal.

Part III: Linear algebra

5. In this problem, A is an $m \times m$ matrix over the field of real numbers such that $A^n = I$ (the identity matrix) for some positive integer n.

 (a) Prove that $A^2 = I$ if such an A is symmetric.

 (b) Give an example of such an A where $A^2 \neq I$. Of course, by part (a), this A won’t be symmetric.

6. Let A be the 4×4 real matrix

 \[
 \begin{pmatrix}
 0 & 4 & 0 & 4 \\
 1 & 0 & -1 & 2 \\
 0 & 0 & 0 & 4 \\
 0 & 0 & 1 & 0 \\
 \end{pmatrix}
 \]

 (a) Find the characteristic polynomial of A and the eigenvalues of A.

 (b) Find a basis for each eigenspace of A.

 (c) Find J, the Jordan canonical form of A.

 (d) Find an invertible matrix P such that $AP = PJ$.