To get full credit you must show all your work.
This exam contains 6 real analysis and 6 complex variables questions.

Real Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. Define \(f(x) = \begin{cases} 0 & \text{if } x = 0, \\ x^3 \cos \left(\frac{1}{x} \right) & \text{if } x \neq 0. \end{cases} \)
 Show that \(f' \) is continuous at 0 but \(f' \) is not differentiable at 0.

2. (a) Let \(f \) be a bounded function on \([a, b]\). Define the Riemann integral \(\int_a^b f \).
 (b) Define \(g(x) = \begin{cases} -1 & \text{if } x \text{ is irrational}, \\ x & \text{if } x \text{ is rational.} \end{cases} \)
 Show that \(g \) is not Riemann integrable on \([0, 1]\).

3. (a) Define what it means that a function \(f : \mathbb{R} \rightarrow \mathbb{R} \) is uniformly continuous on \(\mathbb{R} \).
 (b) Show that \(f(x) = \sin(x) \) is uniformly continuous on \(\mathbb{R} \).
 (c) Show that \(g(x) = \sin(x^2) \) is not uniformly continuous on \(\mathbb{R} \).

4. Let \((X, d)\) be a metric space and define \(\rho(x, y) = \frac{d(x, y)}{1 + d(x, y)} \) for all \(x, y \in X \). Show that \(\rho \) is a metric on \(X \).

5. For \(n = 1, 2, \ldots \) and \(0 \leq x \leq 1 \), define \(f_n(x) = x^n \).
 (a) Fix \(0 < a < 1 \). Show that the sequence \(\{f_n\} \) converges uniformly on \((0, a)\).
 (b) Is there a subsequence \(\{f_{n_k}\} \) that converges uniformly on \((0, 1)\)? Explain.

6. Let \((X, d)\) be a metric space and \(f : X \rightarrow \mathbb{R} \) be a continuous function. If \(X \) is compact, show that \(f \) is uniformly continuous.
Complex Analysis

100% will be obtained for complete answers to four questions. Indicate clearly which four questions you wish to be graded.

1. Let \(f(z) = \frac{z - i}{z + i} \). Show that \(f \) maps the upper half-plane \(\{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \) into the unit disk \(\{ z \in \mathbb{C} : |z| < 1 \} \).

2. Evaluate the following integral, where \(C \) is the positively oriented circle centered at \((2, 0)\) with radius 2:
\[\oint_C \frac{ze^{3z}}{(z^2 - 1)^2} \, dz. \]

3. Expand \(f(z) = \frac{z}{(z + i)(z - 3)} \) in a Laurent series valid for \(\{ z \in \mathbb{C} : 1 < |z| < 3 \} \).

4. Let \(f(z) = u(x, y) + iv(x, y) \) be an analytic function in the open unit disk \(D = \{ z \in \mathbb{C} : |z| < 1 \} \). Assume that \(u(x, y) \neq v(x, y) \) for all \((x, y) \in D \). Find all such \(f \) for which the function
\[g(z) = [u(x, y)]^2 + i[v(x, y)]^2 \]
is analytic in \(D \).

5. Evaluate the integral \(\int_0^\infty \frac{x^2}{(x^2 + 1)(x^2 + 9)} \, dx. \)

6. Find all possible entire functions \(f \) with the property that \(|f(z)| \leq 2|z| + 1 \) for all \(z \in \mathbb{C} \). Prove that you have found all such functions.