September 29, 2018

Instructions

Do all four problems.

Show all of your computations.
Prove all of your assertions or quote appropriate theorems.
This is a closed book examination.
This is a three hour test.
1. Let \(X \geq 0 \) be a random variable on \((\Omega, \mathcal{A}, P)\) and \(\int_{\Omega} X \, dP = a, 0 < a < \infty \). Show the set function \(\nu \) defined on \(\mathcal{A} \) as follows.

\[
\nu(A) = \frac{1}{a} \int_{A} X \, dP
\]

is a probability measure on \(\mathcal{A} \).

2. Let \(\{X_n, n \geq 1\} \) be a sequence of random variables. Show \(X_n \overset{P}{\to} 0 \) if and only if

\[
\mathbb{E} \left(\frac{X_n^2}{1 + X_n^2} \right) \to 0
\]
3. [25 points] Let \(\{X_n : n \geq 1\} \) be a sequence of random variables and let \(c \) be a constant. Show that if the sequence \(\{X_n : n \geq 1\} \) converges in distribution to \(c \), then the sequence \(\{X_n : n \geq 1\} \) converges in probability to \(c \).

4. [25 points] Let \(\mathcal{P} = \{P_\theta, \theta \in \Theta\} \) be a family of distributions, where \(\theta \) is a \(p \)-dimensional parameter contained in a parameter space \(\Theta \). Suppose that the distributions \(P_\theta \) of \(\mathcal{P} \) have probability densities \(p_\theta = \frac{dP_\theta}{d\mu} \) with respect to a \(\sigma \)-finite measure \(\mu \). Let \(X_1, \ldots, X_n \) be a random sample drawn from a population with density \(p_\theta \). Write \(\mathbf{X} = (X_1, \ldots, X_n) \) and \(\mathbf{x} = (x_1, \ldots, x_n) \), where \(\mathbf{x} \) is the observed value of \(\mathbf{X} \). Show that a necessary and sufficient condition for a statistic \(\psi(\mathbf{X}) \) to be sufficient for \(\mathcal{P} \) is that for any fixed \(\theta \) and \(\theta_0 \), the ratio \(\frac{p_\theta(\mathbf{x})}{p_{\theta_0}(\mathbf{x})} \) is a function only of \(U(\mathbf{x}) \).