Ph.D. Qualifying Examination
Probability and Statistical Theory

April 24, 2010

Instructions
Do all four problems.

Show all of your computations.
Prove all of your assertions or quote appropriate theorems.
This is a closed book examination.
This is a three hour test.
1. Let \(f_n \) and \(g_n \) be integrable functions for a measure \(\mu \) with \(|f_n| \leq g_n \). Suppose that as \(n \to \infty \), \(f_n(x) \to f(x) \) and \(g_n(x) \to g(x) \) for almost all \(x \). If \(\int g_n d\mu \to \int g d\mu \), then \(\int f_n d\mu \to \int f d\mu \).

2. Let \(\mu = E(Y) \) denote the mean of a response variable \(Y \). When the response variable \(Y \) is subject to missing, we do not observe all \(Y_1, \ldots, Y_n \) in the sample. Let \(D \) represent the missing indicator variable which is equal to 1 if \(Y \) is observed and is equal to 0 if \(Y \) is missing, and let \((Y_1, D_1), \ldots, (Y_n, D_n) \) denote a random sample of \((Y, D) \). The complete-case sample mean of the observed \(Y \)-values is defined by
\[
\hat{\mu}_c = \frac{\sum_{i=1}^{n} D_i Y_i}{\sum_{i=1}^{n} D_i}.
\]
Let \(\pi = E(D) = P(D = 1) \) denote the probability of observing \(Y \) so that \(1 - \pi \) represents the missing proportion of \(Y \). We assume \(\pi > 0 \) so that there is positive probability of observing \(Y \).

(a) Show that \(\hat{\mu}_c \) is a consistent estimator of \(\mu_1 = E(Y|D = 1) \).

(b) Find the asymptotic variance \(\sigma_c^2 \) of \(\hat{\mu}_c \).

(c) Find a consistent estimator of \(\sigma_c^2 \) in part (b).

(d) Show that \(\mu_1 \) is greater than \(\mu \) if \(\pi(y) = P(D = 1|Y = y) \) is a strictly increasing function in \(y \).

(e) Show that when missing is completely at random, \(\hat{\mu}_c \) is a consistent estimator of \(\mu \). In this case, find the asymptotic variance of \(\hat{\mu}_c \) and compare it with the variance of the full-data sample mean \(\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i \).
3. (a) For any two events $A, B \in \mathcal{F}$ prove that

$$2P(AB) \leq P(A) + P(B).$$

(b) For integrable X prove that

$$E(X) = \int_0^\infty P(X > t) dt - \int_{-\infty}^0 P(X < t) dt.$$