1 Quiz (Jan 18)

Section One.I.2.18c

Solve the given system using matrix notation. Give the solution set in vector notation.

Answer: Form the augmented matrix and put it in reduced echelon form.

1	1	0	1	$ 4 \rangle$		(1)	0	1	4
	1	-1	2	5	\sim	0	1	-1	-1
l	4	-1	5	17 /		0	0	0	0 /

Then x and y are the leading variables, and z is the free variable. The new system is

The solution set is

$$\left\{ \left(\begin{array}{c} 4\\ -1\\ 0 \end{array}\right) + z \left(\begin{array}{c} -1\\ 1\\ 1 \end{array}\right) \middle| z \in \mathbb{R} \right\}$$

2 Quiz (Jan 25)

Section One.II.2.11b

Find the angle between the following two vectors, if it is defined.

$$v = \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \quad w = \begin{pmatrix} 0\\4\\1 \end{pmatrix},$$

Answer: We will need the following information:

$$v \cdot w = (1)(0) + (2)(4) + (0)(1)$$

= 8
$$\|v\| = \sqrt{(1)(1) + (2)(2) + (0)(0)}$$

= $\sqrt{5}$
$$\|w\| = \sqrt{(0)(0) + (4)(4) + (1)(1)}$$

= $\sqrt{17}$

The answer is the angle

$$\theta = \cos^{-1} \left(\frac{v \cdot w}{\|v\| \|w\|} \right)$$
$$= \cos^{-1} \left(\frac{8}{\sqrt{5}\sqrt{17}} \right)$$
$$= \cos^{-1} \left(\frac{8}{\sqrt{85}} \right)$$

= 0.52019588578126996 radians

= 29.805028775336197 degrees

3 Quiz (Feb 1)

Section One.III.1.11d

List all the reduced echelon forms possible for a 3×3 matrix.

Answer: There are 8 families of these matrices. Each family is determined by which columns have leading 1s. Four of the families have a single member, the rest have and infinite number of members. In the list given below a, b are arbitrary numbers.

$\left(\begin{array}{rrrr} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$	no leading 1s
$\left(\begin{array}{rrrr} 1 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$	a single leading 1; in the first column
$\left(\begin{array}{rrr} 0 & 1 & a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$	a single leading 1; in the second column
$\left(\begin{array}{rrr} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$	a single leading 1; in the third column
$\left(\begin{array}{rrrr} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 0 \end{array}\right)$	two leading 1s; in the first and second columns
$\left(\begin{array}{rrrr} 1 & a & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$	two leading 1s; in the first and third columns
$\left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$	two leading 1s; in the second and third columns
$\left(\begin{array}{rrr}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{array}\right)$	three leading 1s; one in each column

4 Quiz (Feb 8)

Section Two.II.1.26

- 1. When is a one element set linearly independent?
- 2. How about a set with two elements?

Answer:

1. Precisely when the element is nonzero.

To see this suppose that $S = {\vec{v}}$ and $\vec{v} \neq \vec{0}$. Then $c \vec{v} = \vec{0}$ implies that c = 0. On the other hand if $c \neq 0$ and $c \vec{v} = \vec{0}$, then (dividing by c) we see that $\vec{v} = \vec{0}$.

2. Precisely when neither element is a multiple of the other.

It is easier, in this case, to show that the set is linearly dependent precisely when one of the elements is a multiple of the other.

To see this suppose that $S = \{\vec{v_1}, \vec{v_2}\}$. And suppose, for example, $\vec{v_2} = c_1 \vec{v_1}$. Then $c_1 \vec{v_1} + c_2 \vec{v_2} = \vec{0}$ where $c_2 = -1 \neq 0$, so S is linearly dependent. On the other hand suppose that S is linearly dependent. That is $c_1 \vec{v_1} + c_2 \vec{v_2} = \vec{0}$ where, say, $c_2 \neq 0$. Then $\vec{v_2} = (-c_1/c_2) \vec{v_1}$.

5 Quiz (Feb 15)

Section Two.III.3.40

- 1. Find a pair of 2×2 matrices A and B (both nonzero) with $\operatorname{rank}(A+B) = \operatorname{rank}(A) + \operatorname{rank}(B)$.
- 2. Find a pair of 2×2 matrices A and B (both nonzero) with $\operatorname{rank}(A+B) \neq \operatorname{rank}(A) + \operatorname{rank}(B)$.

Answer:

1. There are lots of examples. Here's one:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\operatorname{rank}(A) = \operatorname{rank}(B) = 1 \text{ and } \operatorname{rank}(A + B) = 2.$$

2. There are lots of examples. Here's one:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad A + B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
$$\operatorname{rank}(A) = \operatorname{rank}(B) = \operatorname{rank}(A + B) = 1.$$

Notice that 5 of my matrices are already in reduced echelon form (and the sixth -B from part (1) - just requires a row swap) so I don't have to do any messy computations to determine their ranks. When you're constructing examples try to find ones that require as little computation as possible.

6 Quiz (Feb 22)

Section Three.I.1.31 (d) Let f be an automorphism of \mathbb{R}^2 with

$$f\begin{pmatrix} 1\\3 \end{pmatrix} = \begin{pmatrix} 2\\-1 \end{pmatrix}$$
 and $f\begin{pmatrix} 1\\4 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix}$.

Find

 $f(\begin{pmatrix} 0\\ -1 \end{pmatrix}).$

Answer:

$$f\begin{pmatrix} 0\\-1 \end{pmatrix} = f\begin{pmatrix} 1\\3 \end{pmatrix} - \begin{pmatrix} 1\\4 \end{pmatrix}$$
$$= f\begin{pmatrix} 1\\3 \end{pmatrix} - f\begin{pmatrix} 1\\4 \end{pmatrix}$$
$$= \begin{pmatrix} 2\\-1 \end{pmatrix} - \begin{pmatrix} 0\\1 \end{pmatrix}$$
$$= \begin{pmatrix} 2\\-2 \end{pmatrix}.$$

7 Quiz (Feb 29)

Section Three.III.1.17 (b) Consider the linear map

$$f: \mathcal{P}^4 \to \mathcal{P}^4$$
 given by
 $p(x) \mapsto p'(x) + \int_0^1 p(x) \, dx$

Represent the map as a matrix with respect to the basis $B = \langle 1, x, x^2, x^3, x^4 \rangle$. Observe that you are to use the same basis for both the domain and codomain.

Extra Credit

- (a) What is the nullity (dimension of the kernel) of f?
- (b) What is the rank (dimension of the image) of f?

Answer:

$$f(1) = 1$$

$$f(x) = 3/2$$

$$f(x^2) = 2x + 1/3$$

$$f(x^3) = 3x^2 + 1/4$$

$$f(x^4) = 4x^3 + 1/5$$

So we have the matrix:

$$\operatorname{Rep}_{B,B} = \begin{pmatrix} 1 & 3/2 & 1/3 & 1/4 & 1/5 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Extra Credit

Looking at the matrix we see that after row reduction we have

$$\begin{pmatrix} 1 & 3/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

There are 4 leading ones (so the rank is 4) and just 1 column without a leading one (so the nullity is 1).

8 Quiz (Mar 14)

Section Three.IV.3.41

Give an example of two matrices of the same rank with squares of differing rank.

 $\ensuremath{\mathbf{Answer:}}$ There are lots of examples. Here's one:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$A^{2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad B^{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 $\mathrm{rank}(A)=\mathrm{rank}(B)=1$ and $\mathrm{rank}(A^2)=1$ while $\mathrm{rank}(B^2)=0$

9 Quiz (Mar 21)

Section Four.V.2.11

Find the canonical representative of the matrix-equivalence class of each matrix.

(a)	$\begin{pmatrix} 2\\ 4 \end{pmatrix}$	$\frac{1}{2}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	
(b)	$\begin{pmatrix} 0\\1\\3 \end{pmatrix}$	$egin{array}{c} 1 \\ 1 \\ 3 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 3 \end{array}$	$2 \\ 4 \\ -1$

Answer:

(a)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(b) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

10 Quiz (Mar 28)

Section Three.VI.3.1(c) Project the vector $\begin{pmatrix} 3\\0\\1 \end{pmatrix}$ into

$$M = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| x + y = 0 \right\}$$

along

$$N = \left\{ c \cdot \begin{pmatrix} 1\\0\\1 \end{pmatrix} \middle| c \in \mathbb{R} \right\}$$

Answer: Since

$$\begin{pmatrix} 3\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\-2 \end{pmatrix} + \begin{pmatrix} 3\\0\\3 \end{pmatrix}$$
$$= m+n$$

the projection is

$$\begin{pmatrix} 0\\ 0\\ -2 \end{pmatrix}$$

11 Quiz (Apr 4)

Section Four.I.2.13

Show that the determinant of the following matrix is zero.

$$\begin{pmatrix} y+z & x+z & x+y \\ x & y & z \\ 1 & 1 & 1 \end{pmatrix}$$

Answer: The following row operations are *shear* opearations, so the determinant isn't changed. The last matrix has a row of zeros so its determinant is zero.

$$\begin{pmatrix} y+z & x+z & x+y \\ x & y & z \\ 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} x+y+z & x+y+z & x+y+z \\ x & y & z \\ 1 & 1 & 1 \end{pmatrix}$$
add row 2 to row 1
$$\sim \begin{pmatrix} 0 & 0 & 0 \\ x & y & z \\ 1 & 1 & 1 \end{pmatrix}$$
subtract $(x+y+z)$ times row 3 from row 1

The final matrix

- 1. Has the same determinant as the first matrix since we only used *shear* operations and these don't change the determinant.
- 2. Has determinant equal to zero since it has a row of zeros.

12 Quiz (Apr 11)

Section Four.II.1.12(c)

By what factor does the following transformation change the size of boxes?

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} x - y \\ x + y + z \\ y - 2z \end{pmatrix}$$

Answer: All we need to do is find the determinant of the matrix

$$\begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & -2 \end{pmatrix}$$
 subtract row 1 from row 2
$$\sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & -5/2 \end{pmatrix}$$
 subtract (1/2) times row 2 from row 3

So the determinant is -5. The map changes the size of blocks by a factor of 5, and also reverses the orientation.

13 Quiz (Apr 18)

Section Five.II.2.7(b)

Find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$ where

 $\begin{pmatrix} 5 & 4 \\ 0 & 1 \end{pmatrix}$

Answer: The matrix A is triangular, so its eigenvalues are on the diagonal: $\lambda = 5, 1$. These will be the diagonal entries of D. We proceed to find eigenvectors. These will be the columns of P.

$$\lambda = 5 \qquad A - 5I = \begin{pmatrix} 0 & 4 \\ 0 & -4 \end{pmatrix}$$
$$\operatorname{Nul}(A - 5I) = \langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle$$
$$\lambda = 1 \qquad A - 1I = \begin{pmatrix} 4 & 4 \\ 0 & 0 \end{pmatrix}$$
$$\operatorname{Nul}(A - 1I) = \langle \begin{pmatrix} 1 \\ -1 \end{pmatrix} \rangle$$

So we can choose

$$P = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \qquad D = \begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix}$$
$$P = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$$

or