Page 1 of 9 Final Exam Section 3, 4, 5, 6, 7, 8, 11 (circle one) 12-19-08 Math 1850 Name

Justify your work. A nongraphing calculator is permitted but not needed. The exam is 2 hours and 200 points are possible; the value of each question is indicated in the left margin. There are 9 pages, including this one: check that no pages are missing. lnstructors: Denis White Ivie Stein, Oliver Ruff.

Problem	Points	Score
1^{*}	24	
2^{*}	15	
3	9	
4	12	
5^{*}	9	
6	11	
7	14	
8	14	
9^{*}	12	
10	8	
11	14	
12	12	
13^{*}	18	
14	14	
15	14	
TOTAL	200	

[^0]1. Differentiate the following functions.
(a) $f(x)=\frac{\sec (x)}{\tan (x)+2}$.
(b) $h(x)=\sqrt{x+\frac{1}{x}}$.
(c) $g(x)=x \csc (2 x)$.
(d) $f(x)=\cos \left((1-x)^{2}\right)$.
2. Evaluate the following limits, if they exist.
(a) $\lim _{x \rightarrow 3}\left(\frac{x^{2}+x-12}{x^{2}-5 x+6}\right)$.
(b) $\lim _{t \rightarrow 4+}\left(\frac{t}{4-t}\right)$.
(c) $\lim _{x \rightarrow \infty}\left(\frac{1-7 x+5 x^{2}}{11-x-3 x^{2}}\right)$.
(9) 3. Find $d y / d x$ by implicit differentiation, if $x^{2}+3 x y+y^{3}=3$.
3. Find all numbers at which the function

$$
f(x)=\left\{\begin{array}{lll}
x^{2} & \text { if } & x \leq 0 \\
x & \text { if } & 0<x<1 \\
2 x-3 & \text { if } & x \geq 1
\end{array}\right.
$$

is discontinuous. Explain your answer using, for example, limits or a sketch of the graph.
5. Find an equation for the tangent line to the curve $y=\tan (3 x)$ at the point $\left(\frac{\pi}{12}, 1\right)$. (9)
6. Use the definition of "derivative" to find the derivative of the function
(11)

$$
f(x)=x^{3}-2 x
$$

7. Evaluate the following integrals:

$$
\begin{equation*}
\text { (a) } \int_{\pi / 4}^{\pi / 2}\left(\frac{1}{\sqrt{x}}+\sin (2 x)\right) d x \text {. } \tag{14}
\end{equation*}
$$

(b) $\int_{0}^{\pi / 2}(1+\cos (t))^{7} \sin (t) d t$.
8. Evaluate the following integrals:
(a) $\int \frac{x+\sqrt{x}}{x^{3}} d x$.
(b) $\int \frac{z}{\left(z^{2}-1\right)^{\frac{1}{2}}} d z$.
9. Find a function $f(x)$ such that $f^{\prime \prime}(x)=24 x^{2}+2 x+10, f(1)=5$, and $f^{\prime}(1)=-3$.
10. Find the area of the region bounded by the y-axis, the line $y=4$, and the curve $y=\sqrt{x}$.
11. Find the absolute maximum and minimum of $f(x)=x^{3}-3 x+1$ on the interval $[0,3]$.
12. Let $f(x)=x^{4}-4 x^{3}$.
(a) Find the intervals on which f is increasing and decreasing, and describe its behavior at any critical points.
(b) Find the intervals of concavity and any inflection points.
13. Let $f(x)=\frac{x^{2}}{x^{2}+9}$.
(a) Find the vertical and horizontal asymptotes of the graph of f, if any exist.
(b) Find the intervals of increase or decrease.
(c) Find the critical values of f and classify them as local maxima, local minima, or neither.
(d) Use the above information to sketch the graph $y=f(x)$.
14. A car is moving around an elliptical track described by the equation $5 x^{2}+2 y^{2}=$ 13. As the car passes through the point ($1,-2$), its x-coordinate is increasing at $100 \mathrm{~km} / \mathrm{h}$. How fast is the y coordinate changing at this instant?
15. A box with a square base and open top is to have a volume of $64 \mathrm{ft}^{3}$. Find the dimensions of the box that minimize the amount of material used in its construction.

[^0]: * Common Assessment Questions

