MATH 1850 Sec 011 and 012
 CALCULUS I
 QUIZ 10

November 9, 2010

Name (Last, First) \qquad

1. Find the open intervals on which the function is increasing and decreasing.

$$
f(x)=x^{4}-8 x^{2}+16
$$

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-16 x=0 \\
& x\left(x^{2}-4\right)=0 \\
& x(x-2)(x+2)=0
\end{aligned}
$$

Hence $x=0,-2,2$
Pick a number in $(-\infty,-2)$. Let's pick $-3 . f^{\prime}(-3)=4 \cdot(-3)^{3}-16 \cdot(-3)=-108+48=$ -60 which is negative, hence $f(x)$ is decreasing on $(-\infty,-2)$.

Pick a number in $(-2,0)$. Let's pick $-1 . f^{\prime}(-1)=4 \cdot(-1)^{3}-16 \cdot(-1)=-4+16=12$ which is positive, hence $f(x)$ is increasing on $(-2,0)$.

Pick a number in $(0,2)$. Let's pick 1. $f^{\prime}(1)=4 \cdot(1)^{3}-16 \cdot(1)=4-16=-12$ which is negative, hence $f(x)$ is decreasing on $(0,2)$.

Pick a number in $(2, \infty)$. Let's pick 3. $f^{\prime}(3)=4 \cdot(3)^{3}-16 \cdot(3)=108-48=60$ which is positive, hence $f(x)$ is increasing on $(2, \infty)$.

Hence $f(x)$ is increasing on $(-2,0) \cup(2, \infty)$ and decreasing on $(-\infty,-2) \cup(0,2)$.

