MATH 1850 Sec 011 and 012
 CALCULUS I
 QUIZ 1
 August 31, 2010

Name (Last, First)

1. Find the domain of $y=\frac{x+3}{4-\sqrt{x^{2}-9}}$.

For the domain $x^{2}-9 \geq 0$, which implies $x \in(-\infty,-3] \cup[3, \infty)$. However the denominator cannot be zero, therefore
$4-\sqrt{x^{2}-9} \neq 0$
$4 \neq \sqrt{x^{2}-9}$
$16 \neq x^{2}-9$
$x^{2} \neq 25$
$x \neq 5$ or -5 .
Therefore the final domain after excluding these two points is $(-\infty,-5) \cup(-5,-3] \cup$ $[3,5) \cup(5, \infty)$.
2. Solve for the angle θ, where $0 \leq \theta \leq 2 \pi$.

$$
\sin 2 \theta-\cos \theta=0
$$

$\sin 2 \theta-\cos \theta=0$
$2 \sin \theta \cos \theta-\cos \theta=0$
$\cos \theta(2 \sin \theta-1)=0$
$\cos \theta=0$ or $\sin \theta=\frac{1}{2}$
If $\cos \theta=0$ then $\theta=\pi / 2,3 \pi / 2$. If $\sin \theta=\frac{1}{2}$ then $\theta=\pi / 6,5 \pi / 6$.
Therefore $\theta=\pi / 2,3 \pi / 2, \pi / 6,5 \pi / 6$.

