(a)
$$x^2 + 9x + 20$$
 (a) $(x + 5) (x + 4)$

(b)
$$27 + 3x - 9x^3 - x^4$$

(b) $3(9 + x) - x^3(9 + x)$

$$(9 + x)(3 - x^3)$$

2. Solve the quadratic equation by completing the square. Show your work. (5 points)

$$x^{2} + 16x + 46 = 0$$

$$\chi^{2} + 16x = -46$$

$$\chi^{2} + 16x + 64 = -46 + 64$$

$$(\chi + 8)^{2} = 18$$

$$\chi + 8 = \pm \sqrt{18} = \pm 3\sqrt{2}$$

$$\chi = -8 \pm 3\sqrt{2}$$

3. Perform the operation and write the result in the standard form. Show your work.

(a)
$$(4-7i)(6+4i)$$

= $24+16i-42i-28i^2$
= $24-26i+28$
= $52-26i$

(b)
$$4i^7 - 3i^4$$
 (8 point)
= $4(i^2)^3i - 3(i^2)^2$
= $4(-1)^3i - 3(-1)^2$
= $-4i - 3$

4. Find all solutions to the equation. Check your solutions in the original equation. Show your work. (5 points)

$$12x^{4} - 48x^{2} = 0$$

$$12x^{2}(x^{2} - 4) = 0$$

$$x^{2}(x-2)(x+2) = 0$$

$$x = 0, 2, -2$$

$$\frac{\text{Check o}}{12(0)^4 - 48(0)^2 = 0} \sqrt{\frac{\text{Check 2}}{12(2)^4 - 48(2)^2}} = \frac{\text{Check - 2}}{12(-2)^4 - 48(-2)^2}$$

$$= 12 \cdot 16 - 48 \cdot 4$$

$$= 192 - 192$$

$$= 0 \quad \sqrt{\frac{12(2)^4 - 48(2)^2}{12(-2)^4 - 48(-2)^2}}$$

$$= 12 \cdot 16 - 48 \cdot 4$$

$$= 192 - 192$$

$$= 0 \quad \sqrt{\frac{12(2)^4 - 48(2)^2}{12(-2)^4 - 48(-2)^2}}$$

5. Solve the inequality and sketch the solution on the real number line. Show your work. (8 points)

$$3|x-4| \ge 6$$

 $3(x-4) \ge 6$
 $x-4 \ge 2$
 $x \ge 6$
 $(-\infty, 2] \cup [6,\infty)$
 $3|x-4| \ge 6$
 $x-4 \le -2$
 $x \le 2$

6. Solve the inequality and sketch the solution on the real number line. Show your work. (8 points)

$$x^{2}-5x+4<18$$

$$x^{2}-5\times-14<0$$

$$(x-7)(x+2)<0$$
Critical points
$$7,-2$$

$$-3$$

$$-3$$

$$8$$

$$\frac{At-3}{(-3-7)(-3+2)}=-10.-1=10 > 0$$

$$\frac{4+0}{(0-7)(0+2)} = -7 \cdot 2 = -14 \cdot 0$$

$$\frac{A+8}{(8-7)(8+2)}=1.10=10>0$$

7. Write the slope-intercept form of the equation of the line through the given point and perpendicular to the given line. Show your work. (8 points)

$$(-4,2) 2x+3y=-4$$

$$2x+3y=-4$$

$$3y=-2x-4$$

$$y=-\frac{2}{3}x-\frac{4}{3}, m=-\frac{2}{3}$$
Slope of the new line = $-\frac{1}{-\frac{2}{3}}=\frac{3}{2}$
Point-Slope form

Point-Slope form
$$(y-2) = \frac{3}{2}(x+4)$$

Slope-intercept form
$$y = 2 + \frac{3x}{2} + 6$$

$$y = \frac{3x}{2} + 8$$