$$4(3^{2x-1}) - 3 = 13$$

$$4(3^{2x-1}) = 16$$

$$3^{2x-1} = 4$$

$$\ln 3^{2x-1} = \ln 4$$

$$2x - 1 = \ln 4$$

$$2x - 1 = \frac{\ln 4}{\ln 3}$$

$$2x = \frac{\ln 4}{\ln 3}$$

$$x = \frac{\ln 4}{2\ln 3} + \frac{1}{2}$$

3. Find the length of the arc on a circle of radius 9 feet intercepted by a central angle of 150°. Show your work. (6 points)

$$150^{\circ} = \frac{\hat{S}_{11}}{6} = 0$$
, $Y = 9$ ft
$$l = Y \theta$$

$$l = 9.5 = 15 = 14$$

- 4. (a) Find the reference angle of 1485°. Show your work.
 - (b) Without using a calculator evaluate the sine, cosine and tangent of the angle 1485°. Show your work. (8 points)

(b)
$$\sin(1485^\circ) = \sin(360^\circ x + 445^\circ) = \sin 45^\circ = \sqrt{2}$$

(c) $\sin(1485^\circ) = \cos(360^\circ x + 45^\circ) = \cos 45^\circ = \sqrt{2}$
(b) $\cos(1485^\circ) = \cos(360^\circ x + 45^\circ) = \cos 45^\circ = \sqrt{2}$

5. A passenger in an airplane at an altitude of 8 kilometers sees two towns directly to the east of the plane. The angles of depression to the towns are 28° and 55°. How far apart are the towns? Show your work. (8 points)

$$8 \text{ km}$$

$$62^{\circ} = 8D$$

$$62^{\circ} = 8D$$

$$\Rightarrow 8D = 8 \text{ ton } 62^{\circ}$$

$$= 15 \text{ km}$$

6. Verify the identity. Show your work.

(8 points)

LHS =
$$\frac{\sin \theta \tan \theta}{1 - \cos \theta} - 1 = \sec \theta$$

$$= \frac{\sin \theta \tan \theta}{1 - \cos \theta} - 1$$

$$= \frac{\sin \theta}{\cos \theta} - 1$$

$$= \frac{\sin \theta \tan \theta}{1 - \cos \theta} - 1$$

$$= \frac{\sin \theta \tan \theta}{\cos \theta} - 1$$

$$= \frac{\cos \theta \tan \theta}{\cos \theta} - 1$$

$$= \frac{\sin \theta \tan \theta}{\cos \theta} - 1$$

$$= \frac{\cos \theta}{\cos \theta}$$

4

7. Find the general solution of the trigonometric equation. Show your work. (8 points)

$$2\sec^{2}x + \tan^{2}x - 3 = 0$$

$$2(1 + \tan^{2}x) + \tan^{2}x - 3 = 0$$

$$2 + 2\tan^{2}x + \tan^{2}x - 3 = 0$$

$$2 + 2\tan^{2}x - 1 = 0$$

$$3\tan^{2}x - 1 = 0$$

$$\tan^{2}x = \frac{1}{3}$$

$$\tan^{2}x = \frac{1}{\sqrt{3}}$$

$$\tan^{2}x = \frac{1}{\sqrt{3}}$$

$$\tan^{2}x = \frac{1}{\sqrt{3}}$$

$$\tan^{2}x = \frac{1}{\sqrt{3}}$$

$$x = \frac{1}{\sqrt{3}} + n\pi$$

$$x = \frac{1}{\sqrt{3}}$$

$$x = \frac{1}{\sqrt{3}} + n\pi$$

Bonus Question. Find the exact value of the expression without using your calculator. Show your work. (5 points)

$$\frac{\tan 25^{\circ} + \tan 110^{\circ}}{1 - \tan 25^{\circ} \tan 110^{\circ}}$$