MATH 2850 Sec 007 ELEMENTARY MULTIVARIABLE CALCULUS

QUIZ 6 November 9, 2012

Name (Last, First)	Key	
	(

1. Find a parametrization of the surface cut from the **parabolic cylinder** $y = x^2 + 1$ by the planes z = 0, z = 4 and y = 3. Show your work.

$$= 0, z = 4 \text{ and } y = 3. \text{ Show your work.}$$

$$y = 3 = 3 = 3 = x^{2} + 1$$

$$\Rightarrow x^{2} = 2 = x = \pm \sqrt{2}$$

$$\Rightarrow x = \pm \sqrt{2}$$

$$\Rightarrow y = 1$$

$$\Rightarrow x = \pm \sqrt{2}$$

$$\Rightarrow y = 1$$

$$\Rightarrow x = \pm \sqrt{2}$$

$$\Rightarrow y = 1$$

$$\Rightarrow x = \pm \sqrt{2}$$

$$\Rightarrow y = 1$$

$$\Rightarrow x = \pm \sqrt{2}$$

$$\Rightarrow y = 1$$

$$\Rightarrow z = 2$$

2. Use a parametrization to express the area of the surface as a double integral. Then evaluate the integral. Additionally verify your answer with the usual formula for the surface area of a sides of a cylinder $(S = 2\pi rh)$.

The portion of the cylinder $x^2 + y^2 = 1$ between the planes z = 1 and z = 4.

Circle of
$$v \cdot v \cdot (\theta, z)$$

 $v \cdot v \cdot (\theta, z)$
 $v \cdot v \cdot (\theta, z)$

$$X = \omega \theta \qquad 0 \le \theta \le 2\pi$$

$$y = \sin \theta \qquad 1 \le z \le 4$$
Circle of $v = (\theta, z) = (\omega \theta)^2 + (\sin \theta)^2 + (z)^2$

$$vadius = (-\sin \theta)^2 + (\omega \theta)^2 + 2\pi$$

Surface area =
$$42\pi$$

Surface area = $51 d\theta dz$
= $2\pi \int dz = 6\pi$
Using formula $2\pi rh$
 $h=3$, $r=1$