1. Evaluate

$$
\int\left(5 x^{3}+8 x^{2}-4 x^{2}+7\right) d x
$$

2. Evaluate

$$
\int 6 x^{2}\left(x^{3}-5\right) d x
$$

3. Evaluate

$$
\int \frac{1+2 x^{7}}{11 x} d x
$$

4. Evaluate

$$
\int\left(\frac{\sqrt{\pi}}{x^{5}}+\frac{e^{2}}{\sqrt{x}}\right) d x
$$

5. Find f such that $f^{\prime}(x)=5 x^{2}+7 x-7$ and $f(0)=4$.
6. Evaluate

$$
\int \frac{e^{3 \sqrt{z}}}{\sqrt{z}} d z
$$

7. Evaluate

$$
\int \frac{2 x+9}{\left(2 x^{2}+18 x\right)^{4}} d x
$$

8. Evaluate

$$
\int \frac{3 e^{3 x}}{1+e^{3 x}} d x
$$

9. Approximate the area under the graph of $f(x)$ and above the x-axis with rectangles, using the following methods with $n=4$.

$$
f(x)=-x^{2}+5 \quad \text { from } x=-2 \text { to } x=2
$$

(a) Use left endpoints.
(b) Use right endpoints.
(c) Average the answers in part (a) and (b).
(d) Use midpoints.
10. Approximate the area under the graph of $f(x)$ and above the x-axis with rectangles, using the following methods with $n=4$.

$$
f(x)=\frac{1}{x}+2 \quad \text { from } x=1 \text { to } x=9
$$

(a) Use left endpoints.
(b) Use right endpoints.
(c) Average the answers in part (a) and (b).
(d) Use midpoints.
11. Find the exact values of the integral using formulas from geometry.

$$
\int_{2}^{6}(1+x) d x
$$

12. Find

$$
\int_{0}^{6}(6-x) d x
$$

by using the formula for the area of a triangle.
13. Use substitution to evaluate the integral

$$
\int_{0}^{1} \sqrt{t^{5}+4 t}\left(5 t^{4}+4\right) d t
$$

14. Use substitution to evaluate the integral

$$
\int_{0}^{1} t^{3}\left(1+t^{4}\right)^{3} d t
$$

15. Evaluate

$$
\int_{\sqrt{2}}^{1}\left(\frac{u^{7}}{6}-\frac{1}{u^{4}}\right) d u
$$

16. Use definite integrals to find the area between the x-axis and $f(x)$ over the indicated interval.

$$
f(x)=2 e^{2 x}, \quad[0, \ln 2]
$$

17. Find the area of the region bounded by the graphs of the given equations.

$$
y=9 x, \quad y=x^{3}, \quad x=0, \quad x=3
$$

18. Find the area of the region bounded by the graphs of the given equations.

$$
y=4 x+12, \quad y=x^{2}
$$

19. Find the area between the curves.

$$
x=-1, \quad x=2, \quad y=2 e^{2 x}, \quad y=e^{2 x}+1
$$

20. Find the producers' surplus if the supply function for the pork bellied is given by the following.

$$
S(q)=q^{\frac{7}{2}}+4 q^{\frac{5}{2}}+55
$$

Assume supply and demand are in equilibrium at $q=4$.

