1. Evaluate

$$
\int 9 x e^{4 x} d x
$$

2. Evaluate

$$
\int 10 x \ln (2 x) d x
$$

3. Evaluate

$$
\int x \sqrt[3]{x+3} d x
$$

4. Find the average value of the function on the given interval.

$$
f(x)=e^{x / 3}, \quad[1,2]
$$

5. Find the average value of the function on the given interval.

$$
f(x)=\sqrt{x+1}, \quad[0,8]
$$

6. The function $f(x)=600$ represents the rate of flow of money in dollars per year. Assume a 20-year period at 4% compounded continuously. Find (a) the present value, and (b) the accumulated amount of money flow at $t=20$.
7. The function $f(x)=1500 e^{0.02 x}$ represents the rate of flow of money in dollars per year. Assume a 15 -year period at 4% compounded continuously. Find (a) the present value, and (b) the accumulated amount of money flow at $t=15$.
8. Find the area, if it is finite, of the region under the graph of $y=\frac{5}{2 x^{2}}$ over the interval $[2, \infty)$.
9. Determine whether the integral

$$
\int_{-\infty}^{-5} \frac{4}{x^{4}} d x
$$

converges or diverges, and find the value if it converges.
10. Find the area between the graph of $f(x)=\frac{8}{x-4}$ and the x-axis over the interval $(-\infty, 0]$, if possible.
11. If labor (x) costs $\$ 256$ per unit, materials (y) cost $\$ 122$ per unit, and capital (z) costs $\$ 84$ per unit, write a function for the total cost.
12. For the function $f(x, y)=\sqrt{y^{2}+4 x^{2}}$, find $f(2,-3), f(-5,-5)$ and $f(0,6)$.
13. For the function $z=f(x, y)=-4 x^{3}-6 y^{2}+3 x y$, find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, f_{x}(4,0)$, and $f_{y}(4,0)$.
14. For the function $z=f(x, y)=\ln \left|9 x^{4}+5 x^{2} y^{2}\right|$, find $f_{x}(x, y)$ and $f_{y}(x, y)$. Then find $f_{x}(2,-1)$ and $f_{y}(-4,3)$.
15. Find the four second order partial derivatives $f_{x x}, f_{y y}, f_{x y}, f_{y x}$ for

$$
f(x, y)=8 x^{5} y^{6}+7 x^{8} y^{4}
$$

16. Find the local maxima, local minima, and the saddle points of the given function.

$$
f(x, y)=x^{2}-6 x y+y^{2}+16 y+7
$$

17. Find all local extrema for the function

$$
f(x, y)=4 y^{4}-32 y^{2}+8 x^{2}-16
$$

18. Use the echelon method to solve the system of equations.

$$
\begin{aligned}
4 x-2 y+5 z & =72 \\
5 x-4 y-4 z & =2 \\
x-y+5 z & =46
\end{aligned}
$$

19. Solve the system of equations by setting up an augmented matrix and using the GaussJordan Method.

$$
\begin{aligned}
x+2 y-z & =2 \\
2 x+z & =5 \\
y-3 z & =-7
\end{aligned}
$$

20. Solve the system of equations in Question \# 19 by finding and using the inverse of the coefficient matrix.
