MATH 1270 Sec 005, 007
 CALCULUS FOR THE BUSINESS WITH APPLICATIONS II
 QUIZ 2

January 31, 2011

Name (Last, First) \qquad

1. Find the absolute extrema, if they exist as well as all values of x where they occur.

$$
f(x)=x^{3}-3 x^{2}-24 x+5, \quad[-3,6]
$$

$f^{\prime}(x)=3 x^{2}-6 x-24$. Set $f^{\prime}(x)=0$ and solve for x.
$3 x^{2}-6 x-24=0$
$x^{2}-2 x-8=0$
$(x-4)(x+2)=0$
$x=-2,4$.
$f^{\prime}(x)$ is defined everywhere. Therefore the values of x we need to check for maximum/minimum are $-2,4$ and then endpoints of the intervals $-3,6$.
$f(-2)=33, f(4)=-75, f(-3)=23, f(6)=-31$.
Therefore absolute maximum is attained at -2 and the absolute maximum is 33 . Absolute minimum is attained at 4 and the absolute minimum is -75 .
2. Suppose 100,000 lamps are to be manufactured annually. It costs $\$ 1$ to store a lamp for 1 year, and it costs $\$ 500$ to set up the factory to produce a batch of lamps. Find the number of lamps to produce in each batch.
$M=100,000$
$f=500$
$k=1$
Therefore $q=\sqrt{\frac{2 M f}{k}}=\sqrt{\frac{2 \cdot 100,000 \cdot 500}{1}}=10,000$

