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5.1. Outline of Lecture

• Solution of Linear Homogeneous Equations; the Wronskian
• Complex roots of the Characteristic Equation

5.2. Solution of Linear Homogeneous Equations; the
Wronskian

In this lecture we provide a clearer picture of the structure of the so-
lutions of all second order linear homogeneous equations using results
from previous lectures. We will be asking some basic questions about
second order linear homogeneous equations and answer them with the
help of some theorems. Before doing that, let’s define the notion of a
differential operator.

Let p and q be continuous functions on an open interval I. Then
for any twice differentiable function φ on I, we define the differential
operator L by the equation

(5.1) L[φ] = φ′′ + pφ′ + qφ.

Note that L[φ] is a function on I. The value of L[φ] at a point t is

(5.2) L[φ](t) = φ′′(t) + p(t)φ′(t) + q(t)φ(t).

In this lecture we study the second order linear homogeneous equation
L[φ](t) = 0. Since y = φ(t), we will usually write this equation in the
form

(5.3) L[y] = y′′ + p(t)y′ + q(t)y = 0.

With Eq. (5.3) we associate a set of initial conditions

(5.4) y(t0) = y0, y′(t0) = y′0,
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where t0 is any point in the interval I, and y0 and y′0 are given real
numbers.

The questions that we would like to ask include,

1. Does the initial value problem (5.3), (5.4) always have a solu-
tion.

2. If it has a solution then, does it have more than one.
3. Can anything be said about the form and structure of the

solutions.

The first two questions are answered with the following theorem.

Theorem 5.5. (Existence and Uniqueness Theorem)
Consider the initial value problem

(5.6) y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′0,

where p, q, and g are continuous on an open interval I that contains the
point t0. Then there is exactly one solution y = φ(t) of this problem,
and the solution exists throughout the interval I.

The theorem says three things:

• The initial value problem has a solution; in other words; a
solution exists.
• The initial value problem has only one solution; that is the

solution is unique.
• The solution φ is defined throughout the interval I where the

coefficients are continuous and is at least twice differentiable
there.

We see an application of the above theorem in the next example.

Example 1. Determine the longest interval in which the given initial
value problem is certain to have a unique twice differentiable solution.
Do not attempt to find the solution.

(5.7) (t− 1)y′′ − 3ty′ + 4y = sin t, y(−2) = 2, y′(−2) = 1

Solution 1. If the given differential equation is written in the form
of Eq. (5.6), then p(t) = −3t/(t − 1), q(t) = 4/(t − 1), and g(t) =
sin t/(t− 1). The only point of discontinuity of the coefficient is t = 1.
Therefore, the longest open interval, containing the initial point t = −2,
in which all the coefficients are continuous is −∞ < t < 1. Therefore,
this is the longest interval in which the above theorem guarantees that
the solution exists.

We look into this next theorem, which provides a way of finding
more solutions, starting from two.
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Theorem 5.8. (Principle of Superposition)
If y1 and y2 are two solutions of the differential equation,

L[y] = y′′ + p(t)y′ + q(t)y = 0,

then the linear combination c1y1 + c2y2 is also a solution for any values
of the constants c1 and c2.

Now to answer our third question regarding the form and structure
of the solutions of Eq. (5.3), we begin by examining whether the con-
stants c1 and c2 from the theorem can be chosen so as to satisfy the
initial conditions (5.4). These initial conditions require c1 and c2 to
satisfy the equations

(5.9) c1y1(t0) + c2y2(t0) = y0,

(5.10) c1y
′
1(t0) + c2y

′
2(t0) = y′0.

The determinant of the coefficients of the above system is

(5.11) W =

∣∣∣∣y1(t0) y2(t0)
y′1(t0) y′2(t0)

∣∣∣∣ = y1(t0)y
′
2(t0)− y′1(t0)y2(t0).

If W 6= 0, then Eqs. (5.9), (5.10) have a unique solution (c1, c2) re-
gardless of the values of y0 and y′0. On the other hand, if W = 0, then
the same equations have no solution unless y0 and y′0 satisfy a certain
additional condition; in this case there are infinitely many solutions.

The determinant W is call the Wronskian determinant, or sim-
ply the Wronskian, of the solutions y1 and y2. We use the next
theorem for this new result.

Theorem 5.12. Suppose that y1 and y2 are two solutions of Eq. (5.3)

L[y] = y′′ + p(t)y′ + q(t)y = 0,

and that the initial conditions (5.4)

y(t0) = y0, y
′(t0) = y′0

are assigned. Then it is always possible to choose the constants c1, c2
so that

y = c1y1(t) + c2y2(t)

satisfies the differential equation (5.3) and the initial conditions (5.4)
if and only if the Wronskian

W = y1y
′
2 − y′1y2

is not zero at t0.
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The previous theorem gives us a way of constructing infinite number
of solutions starting from two solutions y1 and y2, whose Wronskian is
not zero at the initial point t0. The next theorem finally answers our
third question about the form and structure of the solution of Eq. (5.3).

Theorem 5.13. Suppose that y1 and y2 are two solutions of Eq. (5.3)

L[y] = y′′ + p(t)y′ + q(t)y = 0,

Then the family of solutions

y = c1y1(t) + c2y2(t)

with arbitrary coefficients c1 and c2 includes every solution of Eq. (5.3)
if and only if there is a point t0 where the Wronskian of y1 and y2 is
not zero.

Theorem 5.13 states that, if and only if the Wronskian of y1 and y2
is not everywhere aero, then the linear combination c1y1+c2y2 contains
all solutions of Eq. (5.3). Is is therefore natural to call the expression

y = c1y1(t) + c2y2(t)

with arbitrary constant coefficients the general solution of Eq. (5.3).
The solutions y1 and y2 are said to form a fundamental set of solu-
tions of Eq. (5.3) if and only if their Wronskian is nonzero.

We look at an application of the above theorem in the next example.

Example 2. Show that y1(t) = t2 and y2(t) = t−1 are fundamental
solutions of the differential equation

(5.14) t2y′′ − 2y = 0

for t > 0.

Solution 2. We can verify that y1 and y2 are indeed solutions to Eq.
(5.14) by substitution. To check whether they form a pair of funda-
mental solutions, we find the Wronskian,

(5.15) W =

∣∣∣∣t2 t−1

2t −1/t2

∣∣∣∣ = t2 · −1

t2
− 2t · t−1 = −3 6= 0.

Since W 6= 0, therefore y1 and y2 form a fundamental set of solutions
and therefore every other solution is of the form c1y1+c2y2 for arbitrary
constants c1 and c2.

A new question that arises now, is whether a differential equation of
the form (5.3) always has a fundamental set of solutions. The following
theorem provides an affirmative answer to this question.
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Theorem 5.16. Consider the differential equation (5.3)

L[y] = y′′ + p(t)y′ + q(t)y = 0.

whose coefficients p and q are continuous on some open interval I.
Choose some point t0 in I. Let y1 be the solution of Eq. (5.3) that also
satisfies the initial conditions

y(t0) = 1, y′(t0) = 0,

and let y2 be the solution of Eq. (5.3) that satisfies the initial conditions

y(t0) = 0, y′(t0) = 1,

Then y1 and y2 form a fundamental solutions of Eq. (5.3).

The above theorem assures that a fundamental set of solutions al-
ways exists. In fact, a differential equation has infinitely many funda-
mental solutions.

Now let us examine further the properties of the Wronskian of two
solutions of a second order linear homogeneous differential equation.
The following theorem, gives a simple explicit formula for the Wron-
skian of any two solutions of any such equation, even if the solutions
themselves are not known.

Theorem 5.17. (Abel’ Theorem)
If y1 and y2 are solutions of the differential equation

L[y] = y′′ + p(t)y′ + q(t)y = 0,

where p and q are continuous on some open interval I, then the Wron-
skian W (y1, y2)(t) is given by

(5.18) W (y1, y2)(t) = ce
−

∫
p(t) dt

,

where c is a certain constant that depends on y1 and y2, but not on t.
Further, W (y1, y2)(t) either is zero for all t in I (if c = 0) or else is
never zero in I (if c 6= 0).

The above theorem says that the Wronskian of any two fundamental
sets of solutions of the same differential equation can differ only by a
multiplicative constant, and that the Wronskian of any fundamental
set of solutions can be determined, up to a multiplicative constant,
without solving the differential equation.

We apply the above the theorem in the next example.

Example 3. Find the general form of the Wronskian of the equation

(5.19) 2t2y′′ + 3ty′ − y = 0, t > 0
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Solution 3. We write the differential equation in the standard form
with the coefficient of y′′ equal to 1. Thus we obtain,

(5.20) y′′ +
3

2t
y′ − 1

2t2
y = 0,

so p(t) = 3/2t. Hence

(5.21) W (y1, y2)(t) = ce
−
∫

3

2t
dt

= ce
−3

2
ln t

= ct−3/2.

Equation (5.21) gives the Wronskian of any pair of solutions of the
differential equation.

5.3. Complex roots of the Characteristic Equation

In the previous lecture we learned how to solve second order linear
homogeneous equation with constant coefficients, whose characteristic
equation has different real roots.

In this section we look into the same equation

(5.22) ay′′ + by′ + cy = 0.

whose characteristic equation

(5.23) ar2 + br + c = 0.

has complex roots. Since the roots are conjugate complex numbers, we
denote them by

(5.24) r1 = λ+ iµ, r2 = λ− iµ,
where λ and µ are real. The corresponding expressions for the two
solutions are given by (Note the two solutions of equation (5.22) is
given by er1t and er2t.)

(5.25) y1(t) = e(λ+iµ)t, y2(t) = e(λ−iµ)t.

y1 and y2 can also be written as

(5.26) y1(t) = eλteiµt, y2(t) = eλte−µt,

We would like to see what it means to raise e to a complex power. The
answer is provided by an important relation known as Euler’s formula.

Euler’s Formula. eiθ = cos θ + i sin θ.
Using Euler’s formula we have y1(t) = eλt(cosµt + i sinµt), and

y2(t) = eλt(cosµt− i sinµt).
However, rather than using the complex-valued solutions y1(t) and

y2(t), let us seek instead a fundamental set of solutions of Eq. (5.22)
that are real-valued. We know that any linear combination of two
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solutions is also a solution, so let us form the linear combinations y1(t)+
y2(t) and y1(t)− y2(t). In this way we obtain

(5.27) y1(t) + y2(t) = 2eλt cosµt, y1(t) + y2(t) = 2ieλt sinµt.

Dropping the multiplicative constants 2 and 2i for convenience, we are
left with

(5.28) u(t) = eλt cosµt, v(t) = eλt sinµt.

u(t) and v(t) form a fundamental set of solutions since W (u, v) =
µe2λt 6= 0 (since µ 6= 0). Therefore the general solution of Eq. (5.22) is

(5.29) y = c1e
λt cosµt+ c2e

λt sinµt,

where c1 and c2 are arbitrary constants. We look into the next example
which uses these results.

Example 4. Solve the given initial value problem.

(5.30) y′′ + 4y′ + 5y = 0, y(0) = 1, y′(0) = 0

Solution 4. The characteristic equation is r2+4r+5 = 0 and its roots
are r = −2 ± i. Thus the general solution of the differential equation
is

(5.31) y = c1e
−2t cos t+ c2e

−2t sin t.

To apply the initial condition we set t = 0 in the the above equation;
this gives

(5.32) y(0) = c1 = 1.

For the second initial condition we must differentiate Eq. (5.31) and
then set t = 0.

(5.33) y′ = −2c1e
−2t cos t− c1e−2t sin t− 2c2e

−2t sin t+ c2e
−2t cos t.

(5.34) y′(0) = −2c1 + c2 = 0.

Substituting c1 = 1, we get c2 = 2. Using these values of c1 and c2 in
Eq. (5.31), we obtain

(5.35) y = e−2t cos t+ 2e−2t sin t.

as the solution of the initial value problem (5.30).

A good question to ask now, is how do the graph of the solution
look like. The presence of trigonometric factors in the solution makes
the graph into an oscillation. The exponential factor determines the
nature of the oscillation as follows.

• If λ > 0, then the oscillations increase with time.
• If λ < 0, then the oscillations decrease with time.



8 DIBYAJYOTI DEB, SECOND ORDER DIFFERENTIAL EQUATIONS

• If λ = 0, then the oscillations stays constant with time.

Since λ = −2 in the previous example, therefore the oscillations decay
with time.


