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6.1. Outline of Lecture

• Repeated Roots; Reduction of Order
• Nonhomogeneous Equations; Method of Undetermined Coeffi-

cients
• Variation of Parameters

6.2. Repeated Roots; Reduction of Order

In the previous lectures we looked at second order linear homogeneous
equations with constant coefficients whose characteristic equation has
either different real roots or complex roots. Now we look into the final
case, when the characteristic equation has repeated roots.

The characteristic equation of the second order linear homogeneous
equation

(6.1) ay′′ + by′ + cy = 0.

is

(6.2) ar2 + br + cr = 0.

When the above equation has repeated roots then its discriminant
b2 − 4ac is zero. Then the roots are

(6.3) r1 = r2 = −b/2a.

Both these roots yield the same solution. In this case we use the
method due to D’Alembert to find a different solution. Recall that
since y1(t) is a solution of Eq. (6.1), so is cy1 for any constant c. The
basic idea is to generalize this observation by replacing c by a function
v(t) and then trying to determine v(t) so that the product v(t)y1(t) is
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also a solution of Eq. (6.1). We demonstrate this method using the
next example.

Example 1. Solve the differential equation

(6.4) y′′ + 6y′ + 9y = 0.

Solution 1. The characteristic equation is

(6.5) r2 + 6r + 9 = (r + 3)2 = 0.

so r1 = r2 = −3. Therefore one solution is y1(t) = e−3t. Let y =
v(t)y1(t). We substitute y = v(t)y1(t) in Eq. (6.4) and use the resulting
equation to find v(t). Starting with

(6.6) y = v(t)y1(t) = v(t)e−3t.

we have

(6.7) y′ = v′(t)e−3t − 3v(t)e−3t.

and

(6.8) y′′ = v′′(t)e−3t − 6v′(t)e−3t + 9v(t)e−3t.

By substituting the expressions in Eqs. (6.6), (6.7), (6.8) in Eq. (6.4)
and collecting terms, we obtain

(6.9) [v′′(t)− 6v′(t) + 9v(t) + 6v′(t)− 18v(t) + 9v(t)]e−3t = 0.

which simplifies to

(6.10) v′′(t) = 0.

Therefore

(6.11) v′(t) = c1

and

(6.12) v(t) = c1t+ c2,

where c1 and c2 are arbitrary constants. Finally substituting for v(t)
in Eq. (6.6), we obtain

(6.13) y = c1te
−3t + c2e

−3t.

The second term on the right side of Eq. (6.13) corresponds to the
original solution y1(t) = e−3t, but the first term arises from a second
solution, namely y2(t) = te−3t. We can verify that these solutions form
a fundamental set by calculating their Wronskian. The Wronskian
turns out to be

(6.14) W (y1, y2)(t) = e−6t 6= 0.
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The procedure used in the above example can be generalized to
a more general equation whose characteristic equation has repeated
roots. In general for an equation

(6.15) ay′′ + by′ + cy = 0

the general solution is

(6.16) y = c1e
−bt/2a + c2te

−bt/2a.

where c1 and c2 are arbitrary constants. The geometrical behavior of
solutions is similar in this case to that when the roots are real and
different. If the exponents are either positive or negative, then the
magnitude of the solution grows or decays accordingly; the linear factor
t has little significance. However, if the repeated root is zero, then
the differential equation is y′′ = 0 and the general solution is a linear
function of t.

6.2.1. Reduction of Order

The method discussed in the earlier section is more generally applica-
ble. Suppose that we know one solution y1(t), not everywhere zero,
of

(6.17) y′′ + p(t)y′ + q(t)y = 0.

We can assume the other solution is v(t)y1(t) and apply the earlier
method to find v(t). We illustrate this in the next example.

Example 2. Given that y1(t) = t−1 is a solution of

(6.18) 2t2y′′ + 3ty′ − y = 0, t > 0,

find a fundamental set of solutions.

Solution 2. We set y = v(t)t−1, then

(6.19) y′ = v′t−1 − vt−2, y′′ = v′′t−1 − 2v′t−2 + 2vt−3.

Substituting for y, y′, and y′′ in Eq. (6.18) and collecting terms, we
obtain

(6.20) 2t2(v′′t−1 − 2v′t−2 + 2vt−3) + 3t(v′t−1 − vt−2)− vt−1

(6.21) = 2tv′′ − v′ = 0.

Therefore we see that Eq. (6.21) is a separable equation, by noting
that v′′ = (v′)′
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Separating them out makes both side integrable,

(6.22)

∫
(v′)′

v′
=

∫
1

2t
.

(6.23) ln |v′(t)| = ln |ct1/2|.

Therefore

v′(t) = ct1/2;

then

v(t) =
2

3
ct3/2 + k.

It follows that

(6.24) y =
2

3
ct1/2 + kt−1.

where c and k are arbitrary constants. The second term on the right
side of Eq. (6.24) is a multiple of y1(t) and can be dropped, but the
first term provides a new solution of y2(t) = t1/2. The Wronskian of y1
and y2 is

(6.25) W (y1, y2)(t) =
3

2
t−3/2, t > 0.

Consequently, y1 and y2 form a fundamental set of solutions of Eq.
(6.18).

6.3. Nonhomogeneous Equations; Method of Unde-
termined Coefficients

In this section we learn how to solve a special type of the general
nonhomogeneous equation, specifically equations of the form

(6.26) ay′′ + by′ + cy = g(t),

where a, b, and c are constants and g(t) is a special function of t.
Before embarking on that, we look at two results that describe the

structure of solutions of the general nonhomogeneous equation

(6.27) L[y] = y′′ + p(t)y′ + q(t)y = g(t),

where p, q, and g are given continuous functions of the open interval I.
Let

(6.28) L[y] = y′′ + p(t)y′ + q(t)y = 0,

be the homogeneous equation corresponding to Eq. (6.27).
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Theorem 6.29. If Y1 and Y2 are two solutions of the nonhomogeneous
equation (6.27), then their difference Y1 − Y2 is a solution of the cor-
responding homogeneous equation (6.28). If in addition, y1 and y2 are
a fundamental set of solutions of Eq. (6.28), then

(6.30) Y1(t)− Y2(t) = c1y1(t) + c2y2(t),

where c1 and c2 are constants.

Proof of the above theorem follows from previous lectures and sim-
ple algebra and can be found in the text book.

Theorem 6.31. The general solution of the nonhomogeneous equation
(6.27) can be written in the form

(6.32) y = φ(t) = c1y1(t) + c2y2(t) + Y (t),

where y1 and y2 are a fundamental set of solutions of the corresponding
homogeneous equation (6.28), c1 and c2 are arbitrary constants, and Y
is some specific solution of the nonhomogeneous equation (6.27).

The proof of Theorem (6.31) follows quickly from the preceding
theorem. We can think of Y1 as arbitrary solution φ and Y2 as the
specific solution Y .

Theorem (6.31) states that to solve the nonhomogeneous equation
(6.27), we must do three things:

1. Find the general solution c1y1(t)+ c2y2(t) of the corresponding
homogeneous equation. This solution is sometimes called the
complementary solution and denoted by yc(t).

2. Find some specific solution Y (t) of the nonhomogeneous equa-
tion. This solution is sometimes called the particular solution.

3. Add together the functions found in the two preceding steps.

Since we already know how to find yc(t), for homogeneous equations
with constant coefficients, we would therefore like to find a specific
solution of the nonhomogeneous equation (6.26) that we mentioned
earlier at the beginning of the section.

We do this in this section for some special functions g(t) in Eq.
(6.26) using the Method of Undetermined Coefficients. This method
requires us to make an initial assumption about the form of the partic-
ular solution Y (t), but with the coefficients left unspecified. We then
substitute the assumed expression into the equation and attempt to de-
termine the coefficients so as to satisfy that equation. We summarize
the method next.
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6.3.1. Method of Undetermined Coefficients.

To find the particular solution let us begin with nonhomogeneous equa-
tion with constant coefficients

(6.33) ay′′ + by′ + cy = g(t),

where a, b, and c are constants.

1. We make sure that the function g(t) in Eq. (6.26) belongs to
one of the classes of functions in the next table, that is, it in-
volves nothing more than exponential functions, sines, cosines,
polynomials, or sum or products of such functions.

2. If g(t) = g1(t) + · · ·+ gn(t), that is, if g(t) is a sum of n terms,
then we form n subproblems, each of which contains only one
of the terms g1(t), . . . , gn(t). The ith subproblem consists of
the equation

(6.34) ay′′ + by′ + cy = gi(t),

where i runs from 1 to n.
3. Depending on gi(t), we assume the particular solution Yi(t)

according to the next table.

gi(t) Yi(t)
Pn(t) = a0t

n + a1t
n−1 + · · ·+ an A0t

n + A1t
n−1 + · · ·+ An

Pn(t)eαt (A0t
n + A1t

n−1 + · · ·+ An)eαt

Pn(t)eαt sin βt or Pn(t)eαt cos βt (A0t
n + A1t

n−1 + · · · +
An)eαt cos βt + (B0t

n + B1t
n−1 +

· · ·+Bn)eαt sin βt

4. If there is any duplication in the assumed form of Yi(t) with
the solutions of the corresponding homogeneous equation, then
multiply Yi(t) by t, or (if necessary) by t2, so as to remove the
duplication. So for instance if we want to find a particular
solution of

(6.35) y′′ + 4y′ + 4y = 6te−2t,

our choice of Y (t) would have to be At2e−2t since te−2t (which
we find from the above table) is a solution of the corresponding
homogeneous equation of Eq. (6.35).

5. Find a particular solution Yi(t) for each subproblems. Then
the sum Y1(t) + · · · + Yn(t) is a particular solution of the full
nonhomogeneous equation (6.26).

Let us look at an example which uses the above method.
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Example 3. Find the particular solution of

(6.36) y′′ − 3y′ − 4y = 2e−t

Solution 3. The table says that our assumption for Y (t) should be
Ae−t for some constant A that is to be determined. However e−t is a
solution of the corresponding homogeneous equation of (6.36)

(6.37) y′′ − 3y′ − 4y = 0

Therefore we modify our assumption of Y (t), by multiplying it with t
and assume that the particular solution is of the form Y (t) = Ate−t.
Then

Y ′(t) = Ae−t − Ate−t, Y ′′(t) = −2Ae−t + Ate−t.

Substituting these expressions for y, y′ and y′′ in Eq. (6.36), we obtain

(6.38) (−2A− 3A)e−t + (A+ 3A− 4A)te−t = 2e−t.

Hence −5A = 2, so A = −2/5. Thus a particular solution of Eq. (6.36)
is

(6.39) Y (t) = −2

5
te−t.

6.4. Variation of Parameters

In this section we describe another method of finding a particular solu-
tion of a non-homogenoeus equation. This method is known as varia-
tion of parameters. The main advantage of variation of parameters
is that it is a general method. Without further adieu, let’s look into
the general theorem illustrating the method.

Theorem 6.40. If the functions p, q and g are continuous on an open
interval I, and if the functions y1 and y2 are a fundamental set of so-
lutions of the homogeneous equation (6.28) corresponding to the non-
homogeneous equation (6.27)

(6.41) y′′ + p(t)y′ + q(t)y = g(t),

then a particular solution of Eq. (6.27) is

(6.42) Y (t) = −y1(t)
∫ t

t0

y2(s)g(s)

W (y1, y2)(s)
ds+ y2(t)

∫ t

t0

y1(s)g(s)

W (y1, y2)(s)
ds,

where t0 is any conveniently chosen point in I. The general solution is

(6.43) y = c1y1(t) + c2y2(t) + Y (t).
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As was mentioned earlier, this method is a general method; in prin-
ciple at least, it can be applied to any equation, and it requires no
detailed assumptions about the form of the solution. On the other
hand, the method of variation of parameters requires us to evaluate
certain integrals involving the nonhomogeneous term in the differential
equation, and this may present difficulties.

We dive into an example which uses the above method.

Example 4. The given functions y1 and y2 satisfy the corresponding
homogeneous equation. Find a particular solution of the given nonho-
mogeneous equation.

(6.44) t2y′′ − 2y = 3t2 − 1, t > 0, y1(t) = t2, y2(t) = t−1

Solution 4. Writing the above equation in the standard form we have,

(6.45) y′′ − 2

t2
y = 3− 1

t2

Therefore p(t) = 0, q(t) = − 2

t2
and g(t) = 3− 1

t2
. The thress functions

are continuous whenever t 6= 0. Therefore we choose t0 = 1. We also
have W (y1, y2) = −3. By the above theorem

Y (t) = −t2
∫ t

1

1

s
· (3− 1

s2
)

−3
ds+

1

t

∫ t

1

s2 · (3− 1

s2
)

−3
ds

=
t2

3

∫ t

1

(
3

s
− 1

s3
) ds− 1

3t

∫ t

1

(3s2 − 1) ds

Integrating the above expression and using the limits we have

Y (t) =
t2

3
(3 ln t+

1

2t2
− 1

2
)− 1

3t
(t3 − t)

After simplification we have

Y (t) = t2 ln t+
1

2
− t2

2

Since t2 is already a solution of the corresponding homogeneous equa-
tion, we can ignore it at this moment. Hence the particular solution of
Eq. (6.44) is given by

(6.46) Y (t) = t2 ln t+
1

2


