Review Problems for Exam 2
 MATH 1850, Spring 2013

1. Find an equation for the tangent to the curve at the given point. Then sketch the curve and the tangent together.

$$
y=8 \sqrt{x}, \quad(1,8)
$$

2. Find the point (x, y) at which the graph of $y=3 x^{2}+8 x-6$ has a horizontal tangent.
3. Find the equations of all lines having slope -3 that are tangent to the curve $y=\frac{12}{x+1}$.
4. Use the formula $f^{\prime}(x)=\frac{f(z)-f(x)}{z-x}$ to find the derivative of the following function.

$$
f(x)=\frac{5}{x+10}
$$

5. Determine if the following piecewise defined function is differentiable at $x=0$.

$$
f(x)= \begin{cases}4 x-1, & x \geq 0 \\ x^{2}+3 x-1, & x<0\end{cases}
$$

What is the right-hand derivative of the given function, $\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}$?
6. Using the definition, calculate the derivative of the function. Then find the value of the derivative as specified.

$$
g(t)=\frac{5}{t^{2}}, \quad g^{\prime}(-2), g^{\prime}(3), g^{\prime}(\sqrt{2})
$$

7. Find the first and the second derivatives.

$$
r=\frac{1}{3 s^{2}}-\frac{7}{4 s^{3}}
$$

8. Find the derivative of the function.

$$
f(s)=\frac{\sqrt{s}-3}{\sqrt{s}+1}
$$

9. Find all points (x, y) on the graph of $y=\frac{x}{x-1}$ with tangent lines perpendicular to the line $y=x+3$.
10. An object is dropped from a tower, 175 ft from the ground. The object's height above ground t sec into the fall is $s=175-16 t^{2}$.
(a) What is the object's velocity, speed, and acceleration at time t ?
(b) About how long does it take the object to hit the ground?
(c) What is the object's velocity at the moment of impact?
11. A body moves on a coordinate line such that it has a position $s=f(t)=$ $t^{2}-4 t+3$ on the interval $0 \leq t \leq 5$, with s in meters and t in seconds.
(a) Find the body's displacement and average velocity for the given time interval.
(b) Find the body's speed and acceleration at the endpoints of the interval.
(c) When, if ever, during the interval does the body change direction?
12. Find $\frac{d y}{d x}$ for $y=9 x^{2} \sin x+18 x \cos x-18 \sin x$.
13. Find $\frac{d p}{d q}$ for $p=\frac{\sin q+\cos q}{\cos q}$.
14. Find $\frac{d r}{d \theta}$ for $r=2-\theta^{5} \sin \theta$.
15. Write the function in the form $y=f(u)$ and $u=g(x)$. Then find $\frac{d y}{d x}$ as a function of x.

$$
y=\left(1-\frac{3 x}{4}\right)^{-4}
$$

16. Find the derivative of the function below.

$$
h(x)=x \cot (2 \sqrt{x})+19
$$

17. Find $\frac{d y}{d t}$.

$$
y=(3+\cos 4 t)^{-5}
$$

18. Find $\frac{d y}{d t}$.

$$
y=\cot ^{2}\left(\cos ^{3} t\right)
$$

19. Find the derivative of the given function.

$$
y=\left(x^{2}-5 x+5\right) e^{6 x / 5}
$$

20. Use implicit differentiation to find $\frac{d y}{d x}$.

$$
(6 x y+5)^{2}=12 y
$$

21. Use implicit differentiation to find $\frac{d y}{d x}$.

$$
x \cos (2 x+7 y)=y \sin x
$$

22. Find the slope of the tangent and normal line to the curve at the given point.

$$
x^{2} y^{2}+y=34, \quad(3,-2)
$$

23. Let $f(x)=4 x^{3}-7 x^{2}-2, x \geq 1$.5. Find the value of $\frac{d f^{-1}}{d x}$ at the point $x=323=f(5)$.
24. Find the derivative of y with respect to x.

$$
y=\frac{\ln x}{5+3 \ln x}
$$

25. Find the derivative of y with respect to x.

$$
y=(\sin 2 x)^{3 x}
$$

