Review Problems for Final Exam
 MATH 1850, Spring 2013

1. Either $\sin x, \cos x$, or $\tan x$ is given. Find the other two if x lies in the specified interval.

$$
\sin x=-\frac{7}{25}, \quad x \in\left[\pi, \frac{3 \pi}{2}\right]
$$

2. Find the domain and range of the function $g(t)=\sqrt{1+9^{-t}}$
3. Simplify using the properties of logarithms.

$$
\ln (\cos \theta)-\ln \left(\frac{\cos \theta}{6}\right)
$$

4. Find the limit.

$$
\lim _{t \rightarrow 5} 9(t-8)(t-4)
$$

5. Find the limit.

$$
\lim _{h \rightarrow 0} \frac{7}{\sqrt{7 h+4}+4}
$$

6. Find the limit.

$$
\lim _{t \rightarrow 8} \frac{t^{2}+3 t-88}{t^{2}-64}
$$

7. Use the following function to answer the following questions.

$$
f(x)= \begin{cases}x^{3}, & x \neq 1 \\ -3, & x=-1\end{cases}
$$

(a) Find $\lim _{x \rightarrow 1^{+}} f(x)$,
(b) $\lim _{x \rightarrow 1^{-}} f(x)$,
(c) Does $\lim _{x \rightarrow 4} f(x)$ exist? If so, what is it? If not, why not?
8. Find the limit.

$$
\lim _{\theta \rightarrow 0} \frac{3 \sin \sqrt{4} \theta}{\sqrt{4} \theta}
$$

9. Find the limit.

$$
\lim _{x \rightarrow 0} \frac{\tan 5 x}{\sin 6 x}
$$

10. Determine the point(s) at which the given function $f(x)$ is continuous.

$$
f(x)=\frac{11}{x-13}-6 x
$$

11. Define $f(4)$ in a way that extends $f(s)=\frac{s^{3}-64}{s^{2}-16}$ to be continuous at $s=4$.
12. Find the limit of the rational function (a) as $x \rightarrow \infty$ and (b) as $x \rightarrow-\infty$.

$$
h(x)=\frac{9 x^{4}}{7 x^{4}+11 x^{3}+6 x^{2}}
$$

13. Find an equation for the tangent to the curve at the given point. Then sketch the curve and the tangent together.

$$
y=8 \sqrt{x}, \quad(1,8)
$$

14. Determine if the following piecewise defined function is differentiable at $x=0$.

$$
f(x)= \begin{cases}4 x-1, & x \geq 0 \\ x^{2}+3 x-1, & x<0\end{cases}
$$

What is the right-hand derivative of the given function, $\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}$?
15. Using the definition, calculate the derivative of the function. Then find the value of the derivative as specified.

$$
g(t)=\frac{5}{t^{2}}, \quad g^{\prime}(-2), g^{\prime}(3), g^{\prime}(\sqrt{2})
$$

16. Find the derivative of the function.

$$
f(s)=\frac{\sqrt{s}-3}{\sqrt{s}+1}
$$

17. Find all points (x, y) on the graph of $y=\frac{x}{x-1}$ with tangent lines perpendicular to the line $y=x+3$.
18. An object is dropped from a tower, 175 ft from the ground. The object's height above ground t sec into the fall is $s=175-16 t^{2}$.
(a) What is the object's velocity, speed, and acceleration at time t ?
(b) About how long does it take the object to hit the ground?
(c) What is the object's velocity at the moment of impact?
19. Find $\frac{d y}{d x}$ for $y=9 x^{2} \sin x+18 x \cos x-18 \sin x$.
20. Find $\frac{d p}{d q}$ for $p=\frac{\sin q+\cos q}{\cos q}$.
21. Find $\frac{d r}{d \theta}$ for $r=2-\theta^{5} \sin \theta$.
22. Write the function in the form $y=f(u)$ and $u=g(x)$. Then find $\frac{d y}{d x}$ as a function of x.

$$
y=\left(1-\frac{3 x}{4}\right)^{-4}
$$

23. Find the derivative of the function below.

$$
h(x)=x \cot (2 \sqrt{x})+19
$$

24. Find $\frac{d y}{d t}$.

$$
y=(3+\cos 4 t)^{-5}
$$

25. Find $\frac{d y}{d t}$.

$$
y=\cot ^{2}\left(\cos ^{3} t\right)
$$

26. Find the derivative of the given function.

$$
y=\left(x^{2}-5 x+5\right) e^{6 x / 5}
$$

27. Use implicit differentiation to find $\frac{d y}{d x}$.

$$
(6 x y+5)^{2}=12 y
$$

28. Use implicit differentiation to find $\frac{d y}{d x}$.

$$
x \cos (2 x+7 y)=y \sin x
$$

29. Find the slope of the tangent and normal line to the curve at the given point.

$$
x^{2} y^{2}+y=34, \quad(3,-2)
$$

30. Let $f(x)=4 x^{3}-7 x^{2}-2, x \geq 1.5$. Find the value of $\frac{d f^{-1}}{d x}$ at the point $x=323=f(5)$.
31. Find the derivative of y with respect to x.

$$
y=\frac{\ln x}{5+3 \ln x}
$$

32. Find the derivative of y with respect to x.

$$
y=(\sin 2 x)^{3 x}
$$

33. Find the derivative of y with respect to x.

$$
y=\cos ^{-1}\left(2 x^{6}\right)
$$

34. Find the derivative of y with respect to x.

$$
y=\sec ^{-1}\left(5 x^{2}+1\right)
$$

35. Assume that all variables are implicit functions of time t. Find $\frac{d y}{d t}$.

$$
x^{2}+4 y^{2}+4 y=17 ; \quad \frac{d x}{d t}=6 \text { when } x=4 \text { and } y=-2
$$

36. A metal cube dissolves in acid such that an edge decreases by $0.40 \mathrm{~mm} / \mathrm{min}$. How fast is the volume of the cube changing when the edge is 8.20 mm ?
37. Find the linearization $L(x)$ of $f(x)=\cot x$ at $x=\frac{\pi}{4}$.
38. Find the differential of the given function.

$$
y=\frac{9}{5 x^{2}+1}
$$

39. Find the absolute maximum and minimum values of the function on the given interval.

$$
f(x)=\frac{1}{x}+\ln x, \quad 0.6 \leq x \leq 5
$$

40. Determine all critical points for the following function.

$$
f(x)=x^{2}+\frac{16}{x}
$$

41. Sketch the graph of the given function by determining the first and the second derivatives and relevant points.

$$
y=x^{3}-7 x^{2}-24 x+8
$$

42. First use L'Hospital's Rule to evaluate $\lim _{x \rightarrow 6} \frac{2 x-12}{5 x^{2}-180}$. Then determine the limit using limit laws and commonly know limits.
43. Use L'Hospital's Rule to evaluate $\lim _{t \rightarrow 0} \frac{-2 \sin \left(7 t^{4}\right)}{-3 t}$
44. Find the limit.

$$
\lim _{x \rightarrow \infty}(1+2 x)^{11 /(2 \ln x)}
$$

45. Find the limit.

$$
\lim _{x \rightarrow 1^{+}} x^{3 /(1-x)}
$$

46. Use the lower, upper and midpoint rule approximation to estimate the area under the graph of $f(x)=2 x^{2}$ between $x=0$ and $x=10$ with five subintervals of equal length.
47. Find the indefinite integral.

$$
\int \frac{1}{x^{3}} d x
$$

48. Evaluate the following definite integral.

$$
\int_{1}^{4}\left(4 x^{3}-2 x^{2}+5 x-1\right) d x
$$

49. Evaluate the following integral.

$$
\int\left(12 x^{2}-4 x\right) \sqrt{4 x^{3}-2 x^{2}+2} d x
$$

50. Evaluate the following integral.

$$
\int \frac{(\ln x)^{2 / 3}}{x} d x
$$

51. Evaluate the following definite integral.

$$
\int_{0}^{\pi / 2} \frac{2 \sin (2 t)}{5-\cos (2 t)} d x
$$

52. Find the area of the region enclosed by the curves $y=x^{2}-2 x$ and $y=$ $-x^{2}+6 x$.
53. Find the area of the region enclosed by the curves $y=x^{2}-4$ and $y=5$.
