QUIZ 5
February 21, 2013
Name (Last, First) \qquad

1. Find the derivative of the following function.

$$
\begin{aligned}
& f(x)=\cos \left(\frac{x}{\sqrt{x+4}}\right) \\
& f^{\prime}(x)=-\sin \left(\frac{x}{\sqrt{x+4}}\right) \cdot \frac{d}{d x}\left(\frac{x}{\sqrt{x+4}}\right) \\
= & -\sin \left(\frac{x}{\sqrt{x+4}}\right) \cdot \frac{\sqrt{x+4} \cdot 1-x \frac{d}{d x}(\sqrt{x+4})}{x+4} \\
= & -\sin \left(\frac{x}{\sqrt{x+4}}\right) \cdot \frac{\sqrt{x+4}^{2 \sqrt{x+4}}}{x+4} \\
= & -\sin \left(\frac{x}{\sqrt{x+4}}\right) \cdot\left(\frac{x+8}{2(x+4)^{3 / 2}}\right)
\end{aligned}
$$

2. Find the slope of the given curve at the given point.

$$
\begin{gathered}
21 y^{2} \frac{d y}{d x}+12 x^{3}=2 \frac{d y}{d x}+8 \\
\left(21 y^{2}-2\right) \frac{d y}{d x}=8-12 x^{3}=2 y+8 x \text { at } 1,11 \\
\frac{d y}{d x}=\frac{8-12 x^{3}}{21 y^{2}-2} \\
\left.\frac{d y}{d x}\right|_{(1,1)}=\frac{8-12}{21-2}=\frac{-4}{19}
\end{gathered}
$$

