\qquad $16 y$

1. Find the intervals on which the function $f(x)=x^{3}-27 x$ is increasing and decreasing. Also identify the function's local extreme values.

$$
\begin{aligned}
f^{\prime}(x)= & 3 x^{2}-27=0 \\
& x^{2}-9=0 \Rightarrow x=3,-3
\end{aligned}
$$

$$
\therefore \text { Increasing }
$$

$$
f^{\prime}(-4)=21>0
$$

$$
\frac{\text { Decreasing: }}{[-3,3]}
$$

$$
f^{\prime}(0)=-27<0
$$

Local maxima $=f(-3)=-27+81$
Local minimum $=f(3)=27-81$ $=-54$
2. Identify the intervals in which the graph of the function is concave up and concave down.

$$
\begin{gathered}
y^{\prime}=x^{2}-6 x-7 \\
y^{\prime \prime}=2 x-6=0 \\
x=3
\end{gathered}
$$

$\frac{\text { Concave up }}{(3, \infty)}$

$$
\begin{aligned}
& y^{\prime \prime}(0)=-6<0 \\
& y^{\prime \prime}(4)=2>0
\end{aligned}
$$

$\frac{\text { Concave down }}{(-\infty, 3)}$

