MATH 2850 Sec 003
ELEMENTARY MULTIVARIABLE CALCULUS
QUIZ 6
April 10, 2013

1. Construct the integral to find the work done by \mathbf{F} over the curve in the direction of increasing t. You do not have to evaluate the integral. Show your work.

$$
\begin{aligned}
& \begin{array}{c}
F=2 i+x j+y k \\
r(t)=(\sin t) i+\cos) j+t k, \quad 0 \leq t \leq 2 \pi
\end{array} \\
& F(r(t))=t i+\sin t j+\cos t k \\
& \frac{d r}{d t}=\cos t i-\sin t j+k \\
& F(r(t)) \cdot \frac{d r}{d t}=t \cos t-\sin ^{2} t+\cos t \\
& W=\int_{0}^{2 \pi}\left(t \cos t-\sin ^{2} t+\cos t\right) d t
\end{aligned}
$$

2. Find the divergence(div) and circulation density(circ. density) of the vector field

$$
\mathbf{F}=e^{x} y \mathbf{i}+\left(x-y^{2}\right) \mathbf{j}
$$

(Hint: For a vector field $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$, $\operatorname{div} \mathbf{F}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}$ and circ. density $\mathbf{F}=$

$$
\begin{aligned}
&\left.\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \quad \frac{\partial M}{\partial x}=e^{x} y, \frac{\partial N}{\partial y}=-2 y \\
& \frac{\partial M}{\partial y}=e^{x} y, \frac{\partial N}{\partial x}=1 \\
& \operatorname{div} F=e^{x} y-2 y \quad \text { circ.density } F=1-e^{x} y
\end{aligned}
$$

