Final Exam, Math 2850
Instr: Denis White Name
There are 200 possible points. A non graphing calculator and a formula sheet are allowed. Check that there are 8 (2 sided) pages.

1. Find an equation for the tangent plane to the surface

$$
x \cos z+y^{2} e^{x z}=4 \quad \text { at } \quad P_{0}(3,-1,0)
$$

2. Solve the initial value problem for \vec{r} as a vector function of t.

$$
\begin{align*}
\frac{d \vec{r}}{d t} & =\frac{1}{(t+1)^{2}} \vec{i}+\frac{1}{t+1} \vec{j}+(t+1)^{1 / 2} \vec{k} \tag{15}\\
r(\overrightarrow{0}) & =\vec{j}+2 \vec{k}
\end{align*}
$$

3. (a) Find the directional derivative of f at $(0,1)$ in the direction of the vector $\vec{v}=\vec{i}+2 \vec{j}$.

$$
\begin{equation*}
f(x, y)=x^{2} y+y^{2}+y e^{x y} \tag{16}
\end{equation*}
$$

(b) Find the maximum rate of change of f at $(0,1)$ and the direction in which it occurs if f is the function in part (a).
4. Find the local maximum, minimum and saddle points for the function $f(x, y)=$ $6 x^{2}-2 x^{3}+3 y^{2}+6 x y$.
5. Evaluate the integral $\iiint_{D} 4 y d V$ if D is bounded by the elliptic paraboloid $z=$ $3 x^{2}+y^{2}+1$ and by the planes $z=0, y=2 x, y=0$ and $x=1$.
6. Let D be the solid that lies between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=9$ in the first octant. Express $\iiint_{D} x z d V$ as an iterated (triple) integral in spherical coordinates. Do NOT evaluate.
7. (a) Show that $\vec{F}(x, y)=\left(y e^{x}+\sin y\right) \vec{i}+\left(e^{x}+x \cos y+2 y\right) \vec{j}$ is conservative and find a function f so that $\vec{F}=\nabla f$.
(b) Find the work done by \vec{F} (\vec{F} as in part (a)) in moving an object along a curve C from $(0,1)$ to $(2, \pi)$.
8. Evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$ if $\vec{F}(x, y, z)=x y z \vec{i}-x y \vec{j}+x^{2} \vec{k}$ along the path C given by $\vec{r}(t)=t \vec{i}+t^{2} \vec{j}+t^{3} \vec{k}, 0 \leq t \leq 2$.
9. Use Green's Theorem to evaluate the line integral

$$
\int_{C}\left(x e^{x}+4 x^{3} y\right) d x+\left(x^{4}+2 x y\right) d y
$$

where C is the boundary of the triangle $0 \leq x \leq 2 y, 0 \leq y \leq 1$ and is positively oriented.
10. Let $\vec{F}=\left(x^{2}+x z\right) \vec{i}+\left(x y-y^{3}\right) \vec{j}+(x z+\sqrt{z}) \vec{k}$
(a) Find the curl of \vec{F} (that is $\nabla \times \vec{F}$).
(b) Find the work done by \vec{F} around the curve C which is the boundary of the triangle cut from the plane $x+y+z=1$ by the first octant and oriented counterclockwise when viewed from above. Use Stoke's Theorem.
11. Find the area of the cap of the sphere $x^{2}+y^{2}+z^{2}=2$ cut by the cone $z=\sqrt{x^{2}+y^{2}}$
12. Find the flux of $F(x, y, z)=4 x \vec{i}+4 y \vec{j}+2 \vec{k}$ outward (away from the z-axis). through the surface cut from the bottom of the paraboloid $z=x^{2}+y^{2}$ by the plane $z=1$.

