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8-5-11 Solutions Name

There are 200 possible points. A non graphing calculator and a formula sheet are allowed.
Check that there are 8 (2 sided) pages.

1. Find an equation for the tangent plane to the surface

x cos z + y2exz = 4 at P0(3,−1, 0)

(12)

The given surface is a level surface of the function F (x, y, z) = x cos z+ y2exz. Therefore
the normal to the surface is given by

∇F = (cos z + y2zexz)~i+ 2yexz~j + (−x sin z + xy2exz)~k

so that ∇F (3,−1, 0) = ~i − 2~j + 3~k. An equation of the tangent plane is therefore
(x− 3)− 2(y + 1) + 3z = 0 or x− 2y + 3z = 5.

2. Solve the initial value problem for ~r as a vector function of t.(15)

d~r

dt
=

1

(t+ 1)2
~i+

1

t+ 1
~j + (t+ 1)1/2~k

~r(0) = ~j + 2~k

We can find ~r by integrating in t.

~r =

∫

1

(t+ 1)2
~i+

1

t+ 1
~j + (t+ 1)1/2~k dt = − 1

t+ 1
~i+ ln |t+ 1|~j + 2

3
(t+ 1)3/2~k + ~C

and we set t = 0 to find ~C: ~j +2~k = ~r(0) = −~i+ 2

3
~k+ ~C. Therefore ~C =~i+2~j + 4

3
~k and

~r = − 1

t+ 1
~i+ ln |t+ 1|~j + 2

3
(t+ 1)3/2~k +~i+ 2~j − 2

3
~k

3. (a) Find the directional derivative of f at (0,1) in the direction of the vector ~v =~i+2~j.
(16)

f(x, y) = x2y + y2 + yexy

We need ∇f = (2xy + y2exy)~i+ (x2 + 2y + exy + xyexy)~j so that ∇f(0, 1) =~i+ 3~j.
The directional derivative is therefore

D~vf(0, 1) =
(∇f(0, 1)) · ~v

|~v| =
7√
5

(b) Find the maximum rate of change of f at (0,1) and the direction in which it occurs
if f is the function in part (a).

The maximum rate of change of f is in the direction ∇f/|∇f |:

~i+ 3~j√
10

and the rate of change in that direction is
√
10.
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4. Find the local maximum, minimum and saddle points for the function f(x, y) = 6x2 −
2x3 + 3y2 + 6xy.(18)

Find the critical points. We compute ∇f = (12x − 6x2 + 6y)~i + (6y + 6x)~j. The ∇f is
defined everywhere and so the critical points arise only when ∇f = ~0 that is when

12x− 6x2 + 6y = 0

6x+ 6y = 0

From the second equation we see that y = −x and we substitute that into the first
equation 6x − 6x2 = 0 so that x = 0 or x = 1. The critical points are (0,0) and (1,-1).
We test them for being max, min or saddle points. We compute the second partials:
fxx = 12− 12x fyy = 6 and fxy = 6 so that the discriminant is ∆ = fxxfyy − (fxy)

2. At
(0,0) ∆ = 36 > 0 and fxx > 0 and so (0,0) is a local minimum. At (1,-1), ∆ = −36 < 0
and so (1,-1) is a saddle.

5. Find the maximum and minimum values f(x, y) = xy can take on the ellipse 4x2+y2 = 16.
(17)

Apply the method of Lagrange Multipliers. The constraint here is g = 16 where g(x, y) =
4x2 + y2. Set ∇f = λ∇g for some λ.

y = λ(8x)

x = λ(2y)

4x2 + y2 = 16

Substituting the second equation into the first gives y = 16(λ)2y so that either y = 0 or
λ = ±1/4. Consider first the case y = 0. Then x = 0 by the first two equations but this
does not satisfy the third equation and so y 6= 0. Next consider the case λ = 1/4. The first
(and second) equation then says y = 2x so that the third equation says 4x2 + 4x2 = 16
so that x = ±

√
2 but y = 2x and so we get two possible solutions

(
√
2, 2

√
2) and (−

√
2,−2

√
2)

. The remaining case to consider is λ = −1/4 in which case we again get x = ±
√
2 from

the third equation but this time the points are

(
√
2,−2

√
2) and (−

√
2, 2

√
2)

To determine the maximum and minimum, we evaluate f : f(
√
2, 2

√
2) = 4 = f(−

√
2,−2

√
2)

and f(
√
2,−2

√
2) = −4 = f(−

√
2, 2

√
2) so that the maximum value is 4 and the mini-

mum is -4.

6. Evaluate the integral
∫∫∫

D 4y dV ifD is bounded by the elliptic paraboloid z = 3x2+y2+1
and by the planes z = 0, y = 2x, y = 0 and x = 1.(16)

Sketch D. The solid is bounded above by the paraboloid z = 3x2 + y2 + 1, below by
the xy-plane (z = 0) and lies above the triangular region with edges y = 2x, y = 0 (the
x-axis) and x = 1. Therefore, expanding the triple integral as an iterated integral we
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have.

∫∫∫

E
4y dV =

∫

1

0

∫

2x

0

∫

3x2+y2+1

0

4y dz dy dx

=

∫

1

0

∫

2x

0

4yz|3x2+y2+1

0
dy dx

=

∫

1

0

∫

2x

0

12x2y + 4y3 + 4y dy dx

=

∫

1

0

6x2y2 + y4 + 2y2|2x0 dx

=

∫

1

0

24x4 + 16x4 + 8x2 dx = [8x5 +
8

3
x3|10 =

31

3

7. Let D be the solid that lies between the spheres x2+y2+z2 = 1 and x2+y2+z2 = 9 in the
first octant. Express

∫∫∫

D xz dV as an iterated (triple) integral in spherical coordinates.
Do NOT evaluate.(16)

Convert to spherical coordinates: the integrand is xz = (ρ sinφ cos θ)(ρ cosφ). Draw a
picture of D: it is an eighth of a ball. D can be described as D = {(ρ, θ, φ) : 1 ≤ ρ ≤
3, 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ π/2}. Therefore

∫∫∫

E
xz dV =

∫ π/2

0

∫ π/2

0

∫

3

1

ρ sinφ cos θ)(ρ cosφρ2 sinφ dρ dφ dθ

=

∫ π/2

0

∫ π/2

0

∫

3

1

ρ4(sinφ)2 cosφ cos θ dρ dφ dθ
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8. (a) Show that ~F (x, y) = (yex + sin y)~i + (ex + x cos y + 2y)~j is conservative and find a
function f so that ~F = ∇f .(18)

We must check if Py = Qx where P = yex + sin y and Q = ex + x cos y + 2y. Since
Py = ex + cos y and Qx = ex + cos y, we see these are equal (on all of the xy-plane)

and so ~F is exact. To find f so that ~F = ∇f we integrate P with respect to x,
regarding y as a constant.

f = yex + x sin y + h(y)

where h(y) is the constant of integration. We should have fy = Q and so we
differentiate the above expression for f with respect to y and compare to Q: fy =
ex + x cos y + h′(y) so that

fy = ex + x cos y + h′(y) = Q = ex + x cos y + 2y

so that h′(y) = 2y. Integrating in y, we have h(y) = y2 + C. Substituting into our
earlier equation for f we have

f = yex + x sin y + y2 + C

(b) Find the work done by ~F (~F as in part (a)) in moving an object along a curve C
from (0, 1) to (2, π).

The work done is f(2, π)−f(0, 1) by the vector form of the fundamental theorem of
calculus. That is work is πe2+2 sinπ+π2+C−(e0+0 sin 1+12+C) = πe2+π2−2.

9. Evaluate the line integral
∫

C
~F · d~r if ~F (x, y, z) = xyz~i − xy~j + x2~k along the path C

given by ~r(t) = t~i+ t2~j + t3~k, 0 ≤ t ≤ 2.(14)

This is not a closed curve and so Green’s theorem does not apply. Also ~F is not exact
and so we simply use the straightforward method of calculating line integrals. We need
~r′(t) =~i+ 2t~j + 3t2~k and ~F (~r(t)) = tt2t3~i− tt2~j + t2~k = t6~i− t3~j + t2~k
∫

C

~F ·d~r =

∫

2

0

(t6~i−t3~j+t2~k)·(~i+2t~j+3t2~k) dt =

∫

2

0

t6+t4 dt =
t7

7
+
t5

5
=

(32)(27)

35
=

864

35

10. Use Green’s Theorem to evaluate the line integral
∫

C
(xex + 4x3y) dx+ (x4 + 2xy) dy

where C is the boundary of the triangle 0 ≤ x ≤ 2y, 0 ≤ y ≤ 1 and is positively oriented.
(16)

Sketch the triangle. Green’s theorem says, that if D denotes the triangle
∫

C P dx+Qdy =
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∫∫

D Qx − Py dA. In our case Qx − Py = (4x3 + 2y)− 4x3 = 2y. Therefore

∫

C
(xex + 4x3y) dx+ (x4 + 2xy) dy =

∫∫

D
2y dA =

∫

1

0

∫

2y

0

2y dx dy

=

∫

1

0

2xy|2y
0

dy =

∫

1

0

4y2 dy =
4

3
y3|10 =

4

3

11. Let ~F = x2y~i+ 2y3z~j + 5xz~k(10)

(a) Find the curl of ~F

The curl is

∇× ~F =







−→
i

−→
j

−→
k

∂
∂x

∂
∂y

∂
∂z

x2y 2y3z 5xz






= (0− 2y3)~i− (5z − 0)~j + (0− x2)~k

(b) Find the divergence of ~F

∇ · ~F =
∂

∂x
M +

∂

∂y
N +

∂

∂z
P = 2xy + 6y2z + 5x

12. Find the area of the cap of the sphere x2 + y2 + z2 = 2 cut by the cone z =
√

x2 + y2(16)

We can treat the surface as the graph of a function z =
√

2− x2 + y2 or describe it para-
metrically as ~r(r, θ) = (r cos θ, r sin θ,

√
2− r2 or, alternatively ~r(φ, θ) = (

√
2 sinφ cos θ,

√
2 sinφ sin θ,

√
2 cos

The cone intersects the surface when x2 + y2 + (
√

x2 + y2)2 = 2 or x2 + y2 = 1 and that
means z = 1 (a circle of radius 1 in the plane z = 1.) In the first case the area is

∫∫

R

√

1 + z2x + z2y dA =

∫

R

√
2

√

2− x2 − y2
dA =

∫

2π

0

∫

1

0

√
2√

2− r2
r dr dθ = 2(2−

√
2)π

where R is the unit circle in the xy–plane and we have converted to polar coordinates
and substituting u = 2− r2.

Alternatively we can describe the surface it parametrically as ~r(r, θ) = (r cos θ, r sin θ,
√
2− r2)

where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π and we can compute the normal

~rr×~rθ =





−→
i

−→
j

−→
k

cos θ sin θ −r(2− r2)−1/2

−r sin θ r cos θ 0



 =
r2

(2− r2)1/2
cos θ~i+

r2

(2− r2)1/2
sin θ~j+r~k
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The area is therefore

∫

2π

0

∫

1

0

|~rr × ~rθ| dr dθ =

∫

2π

0

∫

1

0

(

r4(cos θ)2

2− r2
+

r4(sin θ)2

2− r2
+ r2

)1/2

dr dθ

=

∫

2π

0

∫

1

0

√
2√

2− r2
dr dθ = 2(2−

√
2))π

A third alternative is to parameterize the surface as ~r(φ, θ) =
√
2 sinφ cos θ,

√
2 sinφ sin θ,

√
2 cosφ),

0 ≤ φ ≤ π/4 and 0 ≤ θ ≤ 2π. The ~rφ × ~rθ = 2 sinφ and if you integrate this over the
rectangle 0 ≤ φ ≤ π/4 and 0 ≤ θ ≤ 2π one gets 2(2−

√
2))π.

13. Find the flux of F (x, y, z) = 4x~i+4y~j+2~k outward (away from the z-axis). through the
surface cut from the bottom of the paraboloid z = x2 + y2 by the plane z = 1.(16)

The normal to the surface is −zx~i − zy~j + ~k but this is the inward normal and so the

outward normal is ~N = zx~i+ zy~j − ~k or 2x~i+ 2y~j − ~k. The flux is therefore

∫∫

S

~F · ~ndσ =

∫∫

R

~F (x, y, x2 + y2) · (2x~i+ 2y~j − ~k) dA

=

∫∫

R
8x2 + 8y2 − 1 dA

=

∫

2π

0

∫

1

0

8r2 − 1r dr dθ =

∫

2π

0

2r4 − 1

2
r2|10 dθ = 3π


