Final Exam, Math 2850-021
Page 1 of 8 Pages
8-5-11
Solutions
Name
There are 200 possible points. A non graphing calculator and a formula sheet are allowed. Check that there are 8 (2 sided) pages.

1. Find an equation for the tangent plane to the surface

$$
\begin{equation*}
x \cos z+y^{2} e^{x z}=4 \quad \text { at } \quad P_{0}(3,-1,0) \tag{12}
\end{equation*}
$$

The given surface is a level surface of the function $F(x, y, z)=x \cos z+y^{2} e^{x z}$. Therefore the normal to the surface is given by

$$
\nabla F=\left(\cos z+y^{2} z e^{x z}\right) \vec{i}+2 y e^{x z} \vec{j}+\left(-x \sin z+x y^{2} e^{x z}\right) \vec{k}
$$

so that $\nabla F(3,-1,0)=\vec{i}-2 \vec{j}+3 \vec{k}$. An equation of the tangent plane is therefore $(x-3)-2(y+1)+3 z=0$ or $x-2 y+3 z=5$.
2. Solve the initial value problem for \vec{r} as a vector function of t.

$$
\begin{align*}
\frac{d \vec{r}}{d t} & =\frac{1}{(t+1)^{2}} \vec{i}+\frac{1}{t+1} \vec{j}+(t+1)^{1 / 2} \vec{k} \tag{15}\\
r(\overrightarrow{0}) & =\vec{j}+2 \vec{k}
\end{align*}
$$

We can find \vec{r} by integrating in t.

$$
\vec{r}=\int \frac{1}{(t+1)^{2}} \vec{i}+\frac{1}{t+1} \vec{j}+(t+1)^{1 / 2} \vec{k} d t=-\frac{1}{t+1} \vec{i}+\ln |t+1| \vec{j}+\frac{2}{3}(t+1)^{3 / 2} \vec{k}+\vec{C}
$$

and we set $t=0$ to find $\vec{C}: \vec{j}+2 \vec{k}=\vec{r}(0)=-\vec{i}+\frac{2}{3} \vec{k}+\vec{C}$. Therefore $\vec{C}=\vec{i}+2 \vec{j}+\frac{4}{3} \vec{k}$ and

$$
\vec{r}=-\frac{1}{t+1} \vec{i}+\ln |t+1| \vec{j}+\frac{2}{3}(t+1)^{3 / 2} \vec{k}+\vec{i}+2 \vec{j}-\frac{2}{3} \vec{k}
$$

3. (a) Find the directional derivative of f at $(0,1)$ in the direction of the vector $\vec{v}=\vec{i}+2 \vec{j}$.

$$
\begin{equation*}
f(x, y)=x^{2} y+y^{2}+y e^{x y} \tag{16}
\end{equation*}
$$

We need $\nabla f=\left(2 x y+y^{2} e^{x y}\right) \vec{i}+\left(x^{2}+2 y+e^{x y}+x y e^{x y}\right) \vec{j}$ so that $\nabla f(0,1)=\vec{i}+3 \vec{j}$. The directional derivative is therefore

$$
D_{\vec{v}} f(0,1)=\frac{(\nabla f(0,1)) \cdot \vec{v}}{|\vec{v}|}=\frac{7}{\sqrt{5}}
$$

(b) Find the maximum rate of change of f at $(0,1)$ and the direction in which it occurs if f is the function in part (a).
The maximum rate of change of f is in the direction $\nabla f /|\nabla f|$:

$$
\frac{\vec{i}+3 \vec{j}}{\sqrt{10}}
$$

and the rate of change in that direction is $\sqrt{10}$.
4. Find the local maximum, minimum and saddle points for the function $f(x, y)=6 x^{2}-$ $2 x^{3}+3 y^{2}+6 x y$.
Find the critical points. We compute $\nabla f=\left(12 x-6 x^{2}+6 y\right) \vec{i}+(6 y+6 x) \vec{j}$. The ∇f is defined everywhere and so the critical points arise only when $\nabla f=\overrightarrow{0}$ that is when

$$
\begin{aligned}
12 x-6 x^{2}+6 y & =0 \\
6 x+6 y & =0
\end{aligned}
$$

From the second equation we see that $y=-x$ and we substitute that into the first equation $6 x-6 x^{2}=0$ so that $x=0$ or $x=1$. The critical points are $(0,0)$ and $(1,-1)$. We test them for being max, min or saddle points. We compute the second partials: $f_{x x}=12-12 x f_{y y}=6$ and $f_{x y}=6$ so that the discriminant is $\Delta=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}$. At $(0,0) \Delta=36>0$ and $f_{x x}>0$ and so $(0,0)$ is a local minimum. At $(1,-1), \Delta=-36<0$ and so $(1,-1)$ is a saddle.
5. Find the maximum and minimum values $f(x, y)=x y$ can take on the ellipse $4 x^{2}+y^{2}=16$.

Apply the method of Lagrange Multipliers. The constraint here is $g=16$ where $g(x, y)=$ $4 x^{2}+y^{2}$. Set $\nabla f=\lambda \nabla g$ for some λ.

$$
\begin{aligned}
y & =\lambda(8 x) \\
x & =\lambda(2 y) \\
4 x^{2}+y^{2} & =16
\end{aligned}
$$

Substituting the second equation into the first gives $y=16(\lambda)^{2} y$ so that either $y=0$ or $\lambda= \pm 1 / 4$. Consider first the case $y=0$. Then $x=0$ by the first two equations but this does not satisfy the third equation and so $y \neq 0$. Next consider the case $\lambda=1 / 4$. The first (and second) equation then says $y=2 x$ so that the third equation says $4 x^{2}+4 x^{2}=16$ so that $x= \pm \sqrt{2}$ but $y=2 x$ and so we get two possible solutions

$$
(\sqrt{2}, 2 \sqrt{2}) \text { and }(-\sqrt{2},-2 \sqrt{2})
$$

. The remaining case to consider is $\lambda=-1 / 4$ in which case we again get $x= \pm \sqrt{2}$ from the third equation but this time the points are

$$
(\sqrt{2},-2 \sqrt{2}) \text { and }(-\sqrt{2}, 2 \sqrt{2})
$$

To determine the maximum and minimum, we evaluate $f: f(\sqrt{2}, 2 \sqrt{2})=4=f(-\sqrt{2},-2 \sqrt{2})$ and $f(\sqrt{2},-2 \sqrt{2})=-4=f(-\sqrt{2}, 2 \sqrt{2})$ so that the maximum value is 4 and the minimum is -4 .
6. Evaluate the integral $\iiint_{D} 4 y d V$ if D is bounded by the elliptic paraboloid $z=3 x^{2}+y^{2}+1$ and by the planes $z=0, y=2 x, y=0$ and $x=1$.
Sketch D. The solid is bounded above by the paraboloid $z=3 x^{2}+y^{2}+1$, below by the $x y$-plane ($z=0$) and lies above the triangular region with edges $y=2 x, y=0$ (the x-axis) and $x=1$. Therefore, expanding the triple integral as an iterated integral we
have.

$$
\begin{aligned}
\iiint_{E} 4 y d V & =\int_{0}^{1} \int_{0}^{2 x} \int_{0}^{3 x^{2}+y^{2}+1} 4 y d z d y d x \\
& =\left.\int_{0}^{1} \int_{0}^{2 x} 4 y z\right|_{0} ^{3 x^{2}+y^{2}+1} d y d x \\
& =\int_{0}^{1} \int_{0}^{2 x} 12 x^{2} y+4 y^{3}+4 y d y d x \\
& =\int_{0}^{1} 6 x^{2} y^{2}+y^{4}+\left.2 y^{2}\right|_{0} ^{2 x} d x \\
& =\int_{0}^{1} 24 x^{4}+16 x^{4}+8 x^{2} d x=\left[8 x^{5}+\left.\frac{8}{3} x^{3}\right|_{0} ^{1}=\frac{31}{3}\right.
\end{aligned}
$$

7. Let D be the solid that lies between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=9$ in the first octant. Express $\iiint_{D} x z d V$ as an iterated (triple) integral in spherical coordinates. Do NOT evaluate.
Convert to spherical coordinates: the integrand is $x z=(\rho \sin \phi \cos \theta)(\rho \cos \phi)$. Draw a picture of D : it is an eighth of a ball. D can be described as $D=\{(\rho, \theta, \phi): 1 \leq \rho \leq$ $3,0 \leq \phi \leq \pi / 2,0 \leq \theta \leq \pi / 2\}$. Therefore

$$
\begin{aligned}
\iiint_{E} x z d V & \left.=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{1}^{3} \rho \sin \phi \cos \theta\right)\left(\rho \cos \phi \rho^{2} \sin \phi d \rho d \phi d \theta\right. \\
& =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{1}^{3} \rho^{4}(\sin \phi)^{2} \cos \phi \cos \theta d \rho d \phi d \theta
\end{aligned}
$$

8. (a) Show that $\vec{F}(x, y)=\left(y e^{x}+\sin y\right) \vec{i}+\left(e^{x}+x \cos y+2 y\right) \vec{j}$ is conservative and find a function f so that $\vec{F}=\nabla f$.
We must check if $P_{y}=Q_{x}$ where $P=y e^{x}+\sin y$ and $Q=e^{x}+x \cos y+2 y$. Since $P_{y}=e^{x}+\cos y$ and $Q_{x}=e^{x}+\cos y$, we see these are equal (on all of the $x y$-plane) and so \vec{F} is exact. To find f so that $\vec{F}=\nabla f$ we integrate P with respect to x, regarding y as a constant.

$$
f=y e^{x}+x \sin y+h(y)
$$

where $h(y)$ is the constant of integration. We should have $f_{y}=Q$ and so we differentiate the above expression for f with respect to y and compare to $Q: f_{y}=$ $e^{x}+x \cos y+h^{\prime}(y)$ so that

$$
f_{y}=e^{x}+x \cos y+h^{\prime}(y)=Q=e^{x}+x \cos y+2 y
$$

so that $h^{\prime}(y)=2 y$. Integrating in y, we have $h(y)=y^{2}+C$. Substituting into our earlier equation for f we have

$$
f=y e^{x}+x \sin y+y^{2}+C
$$

(b) Find the work done by \vec{F} (\vec{F} as in part (a)) in moving an object along a curve C from $(0,1)$ to $(2, \pi)$.
The work done is $f(2, \pi)-f(0,1)$ by the vector form of the fundamental theorem of calculus. That is work is $\pi e^{2}+2 \sin \pi+\pi^{2}+C-\left(e^{0}+0 \sin 1+1^{2}+C\right)=\pi e^{2}+\pi^{2}-2$.
9. Evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$ if $\vec{F}(x, y, z)=x y z \vec{i}-x y \vec{j}+x^{2} \vec{k}$ along the path C given by $\vec{r}(t)=t \vec{i}+t^{2} \vec{j}+t^{3} \vec{k}, 0 \leq t \leq 2$.
This is not a closed curve and so Green's theorem does not apply. Also \vec{F} is not exact and so we simply use the straightforward method of calculating line integrals. We need $\vec{r}^{\prime}(t)=\vec{i}+2 t \vec{j}+3 t^{2} \vec{k}$ and $\vec{F}(\vec{r}(t))=t t^{2} t^{3} \vec{i}-t t^{2} \vec{j}+t^{2} \vec{k}=t^{6} \vec{i}-t^{3} \vec{j}+t^{2} \vec{k}$
$\int_{C} \vec{F} \cdot d \vec{r}=\int_{0}^{2}\left(t^{6} \vec{i}-t^{3} \vec{j}+t^{2} \vec{k}\right) \cdot\left(\vec{i}+2 t \vec{j}+3 t^{2} \vec{k}\right) d t=\int_{0}^{2} t^{6}+t^{4} d t=\frac{t^{7}}{7}+\frac{t^{5}}{5}=\frac{(32)(27)}{35}=\frac{864}{35}$
10. Use Green's Theorem to evaluate the line integral

$$
\int_{C}\left(x e^{x}+4 x^{3} y\right) d x+\left(x^{4}+2 x y\right) d y
$$

where C is the boundary of the triangle $0 \leq x \leq 2 y, 0 \leq y \leq 1$ and is positively oriented.
Sketch the triangle. Green's theorem says, that if D denotes the triangle $\int_{C} P d x+Q d y=$

$$
\begin{aligned}
\iint_{D} Q_{x}-P_{y} d A . \text { In our case } Q_{x}-P_{y}= & \left(4 x^{3}+2 y\right)-4 x^{3}=2 y . \text { Therefore } \\
\int_{C}\left(x e^{x}+4 x^{3} y\right) d x+\left(x^{4}+2 x y\right) d y & =\iint_{D} 2 y d A=\int_{0}^{1} \int_{0}^{2 y} 2 y d x d y \\
& =\left.\int_{0}^{1} 2 x y\right|_{0} ^{2 y} d y=\int_{0}^{1} 4 y^{2} d y=\left.\frac{4}{3} y^{3}\right|_{0} ^{1}=\frac{4}{3}
\end{aligned}
$$

11. Let $\vec{F}=x^{2} y \vec{i}+2 y^{3} z \vec{j}+5 x z \vec{k}$
(a) Find the curl of \vec{F}

The curl is

$$
\nabla \times \vec{F}=\left[\begin{array}{rrr}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} y & 2 y^{3} z & 5 x z
\end{array}\right]=\left(0-2 y^{3}\right) \vec{i}-(5 z-0) \vec{j}+\left(0-x^{2}\right) \vec{k}
$$

(b) Find the divergence of \vec{F}

$$
\begin{equation*}
\nabla \cdot \vec{F}=\frac{\partial}{\partial x} M+\frac{\partial}{\partial y} N+\frac{\partial}{\partial z} P=2 x y+6 y^{2} z+5 x \tag{16}
\end{equation*}
$$

12. Find the area of the cap of the sphere $x^{2}+y^{2}+z^{2}=2$ cut by the cone $z=\sqrt{x^{2}+y^{2}}$

We can treat the surface as the graph of a function $z=\sqrt{2-x^{2}+y^{2}}$ or describe it parametrically as $\vec{r}(r, \theta)=\left(r \cos \theta, r \sin \theta, \sqrt{2-r^{2}}\right.$ or, alternatively $\vec{r}(\phi, \theta)=(\sqrt{2} \sin \phi \cos \theta, \sqrt{2} \sin \phi \sin \theta, \sqrt{2} c$ The cone intersects the surface when $x^{2}+y^{2}+\left(\sqrt{x^{2}+y^{2}}\right)^{2}=2$ or $x^{2}+y^{2}=1$ and that means $z=1$ (a circle of radius 1 in the plane $z=1$.) In the first case the area is

$$
\iint_{R} \sqrt{1+z_{x}^{2}+z_{y}^{2}} d A=\int_{R} \frac{\sqrt{2}}{\sqrt{2-x^{2}-y^{2}}} d A=\int_{0}^{2 \pi} \int_{0}^{1} \frac{\sqrt{2}}{\sqrt{2-r^{2}}} r d r d \theta=2(2-\sqrt{2}) \pi
$$

where R is the unit circle in the $x y$-plane and we have converted to polar coordinates and substituting $u=2-r^{2}$.
Alternatively we can describe the surface it parametrically as $\vec{r}(r, \theta)=\left(r \cos \theta, r \sin \theta, \sqrt{2-r^{2}}\right)$ where $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$ and we can compute the normal
$\vec{r}_{r} \times \vec{r}_{\theta}=\left[\begin{array}{rrr}\vec{i} & \vec{j} & \vec{k} \\ \cos \theta & \sin \theta & -r\left(2-r^{2}\right)^{-1 / 2} \\ -r \sin \theta & r \cos \theta & 0\end{array}\right]=\frac{r^{2}}{\left(2-r^{2}\right)^{1 / 2}} \cos \theta \vec{i}+\frac{r^{2}}{\left(2-r^{2}\right)^{1 / 2}} \sin \theta \vec{j}+r \vec{k}$

The area is therefore

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{1}\left|\vec{r}_{r} \times \vec{r}_{\theta}\right| d r d \theta & =\int_{0}^{2 \pi} \int_{0}^{1}\left(\frac{r^{4}(\cos \theta)^{2}}{2-r^{2}}+\frac{r^{4}(\sin \theta)^{2}}{2-r^{2}}+r^{2}\right)^{1 / 2} d r d \theta \\
& \left.=\int_{0}^{2 \pi} \int_{0}^{1} \frac{\sqrt{2}}{\sqrt{2-r^{2}}} d r d \theta=2(2-\sqrt{2})\right) \pi
\end{aligned}
$$

A third alternative is to parameterize the surface as $\vec{r}(\phi, \theta)=\sqrt{2} \sin \phi \cos \theta, \sqrt{2} \sin \phi \sin \theta, \sqrt{2} \cos \phi)$, $0 \leq \phi \leq \pi / 4$ and $0 \leq \theta \leq 2 \pi$. The $\vec{r}_{\phi} \times \vec{r}_{\theta}=2 \sin \phi$ and if you integrate this over the rectangle $0 \leq \phi \leq \pi / 4$ and $0 \leq \theta \leq 2 \pi$ one gets $2(2-\sqrt{2})$) π.
13. Find the flux of $F(x, y, z)=4 x \vec{i}+4 y \vec{j}+2 \vec{k}$ outward (away from the z-axis). through the surface cut from the bottom of the paraboloid $z=x^{2}+y^{2}$ by the plane $z=1$.
The normal to the surface is $-z_{x} \vec{i}-z_{y} \vec{j}+\vec{k}$ but this is the inward normal and so the outward normal is $\vec{N}=z_{x} \vec{i}+z_{y} \vec{j}-\vec{k}$ or $2 x \vec{i}+2 y \vec{j}-\vec{k}$. The flux is therefore

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot \vec{n} d \sigma & =\iint_{R} \vec{F}\left(x, y, x^{2}+y^{2}\right) \cdot(2 x \vec{i}+2 y \vec{j}-\vec{k}) d A \\
& =\iint_{R} 8 x^{2}+8 y^{2}-1 d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1} 8 r^{2}-1 r d r d \theta=\int_{0}^{2 \pi} 2 r^{4}-\left.\frac{1}{2} r^{2}\right|_{0} ^{1} d \theta=3 \pi
\end{aligned}
$$

