\qquad

1. Find an equation of the plane through $P_{0}(2,4,5)$ perpendicular to the line

$$
x=5+t, \quad y=1+3 t, \quad z=4 t
$$

Here the line has direction vector $\vec{i}+3 \vec{j}+4 \vec{k}$ (from the coefficients of t) and that is perpendicular to the plane and so it can serve as a normal to the plane. The plane is therefore $(x-2)+3(y-4)+4(z-5)=0$ or $x+3 y+4 z=34$
2. Sketch the surfaces in Parts (a) and (b)
(a) $x^{2}+4 z^{2}=16$

There is no y and so this is a cylinder surface. This is the equation of an ellipse in the plane $y=0$ and so the surface is an elliptic cylinder centered on

(b) $4 y^{2}+z^{2}-4 x^{2}=4$

This is an elliptic hyperboloid of one sheet centered on the x axis.

Note the axes are rotated from the usual but they still obey the right hand rule.

