\qquad

1. Find the unit tangent vector $\vec{T}(t)$ for the space curve $\vec{r}(t)=\left(e^{t} \cos t\right) \vec{i}+\left(e^{t} \sin t\right) \vec{j}+$ $2 \vec{k}$
Recall that the unit tangent vector is $\vec{T}(t)=\vec{r}^{\prime}(t) /\left|\vec{r}^{\prime}(t)\right|$. Since $\vec{r}(t)=e^{t}(\cos t-$ $\sin t) \vec{i}+e^{t}(\sin t+\cos t) \vec{j}$ so that

$$
\begin{aligned}
\left|\vec{r}^{\prime}(t)\right| & =\left(e^{2 t}(\cos t-\sin t)^{2}+e^{2 t}(\sin t+\cos t)^{2}\right)^{1 / 2} \\
& =e^{t}\left(\cos ^{2} t+\sin ^{2} t-2 \cos t \sin t+\sin ^{2} t+\cos ^{2} t+2 \sin t \cos t\right)^{1 / 2}=\sqrt{2} e^{t}
\end{aligned}
$$

and so

$$
\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left|\overrightarrow{r^{\prime}}(t)\right|}=\frac{1}{\sqrt{2}}((\cos t-\sin t) \vec{i}+(\sin t+\cos t) \vec{j})
$$

2. Display the values of $f(x, y)=4 x^{2}+y^{2}$ in two ways:
(a) by sketching the surface $z=f(x, y)$ and

The graph is an elliptic paraboloid, $z=4 x^{2}+y^{2}$

(b) by drawing an assortment of level curves (at least 2) in the functions domain. Label each curve with its function value.
We graph the two level curves $1=4 x^{2}+y^{2}$ (an ellipse with major axis one in the y direction) and $9=4 x^{2}+y^{2}$ (an ellipse 3 times as big).

3. Sketch a typical level surface of $f(x, y, z)^{5}=x^{2}+y^{2}$

A typical level surface is $f(x, y, z)=c$ or $x^{2}+y^{2}=c$ for $c>0$ and that is a circular cylinder centered on the z-axis and radius \sqrt{c}. When $c=1$ we get the surface below.

