2 Pages!
9/22/2016

Quiz 4, Math 2850-005
Solutions Name
\qquad
4. Find $\partial f / \partial x$ if $f(x, y)=\frac{x+y}{x y-1}$

By the quotient rule

$$
\begin{equation*}
\frac{\partial f}{\partial x}=\frac{x y-1-y(x+y)}{(x y-1)^{2}}=\frac{-1-y^{2}}{(x y-1)^{2}} \tag{6}
\end{equation*}
$$

5. Find all the second-order partial derivatives of $f(x, y)=x \sin \left(x^{2} y\right)$.

We need the first partials:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\sin \left(x^{2} y\right)+2 x^{2} y \cos \left(x^{2} y\right) \\
& \frac{\partial f}{\partial y}=x^{3} \cos \left(x^{2} y\right)
\end{aligned}
$$

Now we can calculate the second partials:

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =2 x y \cos \left(x^{2} y\right)+4 x y \cos \left(x^{2} y\right)-4 x^{3} y^{2} \sin \left(x^{2} y\right)=6 x y \cos \left(x^{2} y\right)-4 x^{3} y^{2} \sin \left(x^{2} y\right) \\
\frac{\partial^{2} f}{\partial x \partial y} & =x^{2} \cos \left(x^{2} y\right)+2 x^{2} \cos \left(x^{2} y\right)-2 x^{4} y \sin \left(x^{2} y\right)=3 x^{2} \cos \left(x^{2} y\right)-2 x^{4} y \sin \left(x^{2} y\right) \\
\frac{\partial^{2} f}{\partial y^{2}} & =-x^{5} \sin \left(x^{2} y\right)
\end{aligned}
$$

and of course:

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}
$$

