Quiz 6, Math 2850-007
10/22/2015
Solutions
Name \qquad

1. Find the local maxima and minima and saddle points of the function $f(x, y)=$ $6 x^{2}-2 x^{3}+3 y^{2}+6 x y$.
We need $\nabla f(x, y)=\left(12 x-6 x^{2}+6 y\right) \vec{i}+(6 y+6 x)$. Since f is differentiable everywhere the only critical points come when $\nabla f=\overrightarrow{0}$ so that

$$
\begin{array}{r}
12 x-6 x^{2}+6 y=0 \\
6 y+6 x=0
\end{array}
$$

From the second equation we have $y=-x$ and using this in the first equation gives $6 x-6 x^{2}=0$ or $x(1-x)=0$. The critical points are $(1,-1)$ and $(0,0)$. At each of these we apply the second derivative test and so we need the second derivatives $f_{x x}=12-12 x, f_{x y}=6$ and $f_{y y}=6$. Now check each critical point
$(\mathbf{0}, \mathbf{0})$ Here $f_{x x}=12$ and $D=f_{x x} f_{y y}-f_{x y}^{2}=36>0$ and $f_{x x}>0$ so that $(0,0)$ is a local minimum and the local minimum values is $f(0,0)=0$
$(1,-1)$ Here $f_{x x}=0$ and $D=-36<0$ and so $(1,-1)$ is a saddle point. $(f(1,-1)=$ 1.)
2. Evaluate the double integral over $R: 0 \leq x \leq 1,0 \leq y \leq 2$.

$$
\begin{equation*}
\iint_{R} \frac{x y^{3}}{x^{2}+1} d A \tag{6}
\end{equation*}
$$

We are asked to evaluate the interated integral

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{2} \frac{x y^{3}}{x^{2}+1} d y d x & =\left.\int_{0}^{1} \frac{1}{4} y^{4}\right|_{0} ^{2} \frac{x}{x^{2}+1} d x \\
& =\frac{1}{4} 2^{4} \int_{0}^{1} \frac{x}{x^{2}+1} d x
\end{aligned}
$$

To do the integral over x we substitute $u=x^{2}+1$ so that $d u=2 x d x$. We can convert the limits of integration if we note that $x=0$ implies $u=1$ and $x=1$ implies $u=2$

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{2} \frac{x y^{3}}{x^{2}+1} d y d x & =\frac{1}{4} 2^{4} \int_{0}^{1} \frac{x}{x^{2}+1} d x \\
& =2 \int_{1}^{2} \frac{1}{u} d u \\
& =\left.2 \ln u\right|_{1} ^{2}=2 \ln 2
\end{aligned}
$$

(The other order of integration is also possible and gives the same answer.)
3. Find the volume of the region bounded above by the surface $z=2 \sin x \cos y$ and below by the rectangle $R: 0 \leq x \leq \pi / 2,0 \leq y \leq \pi / 4$.
Volume is given by the double integral

$$
\begin{aligned}
\iint_{R} 2 \sin x \cos y d A & =\int_{0}^{\pi / 2} \int_{0}^{\pi / 4} 2 \sin x \cos y d y d x \\
& =\left.\int_{0}^{\pi / 2} 2 \sin x \sin y\right|_{0} ^{\pi / 4} d x \\
& =\sqrt{2} \int_{0}^{\pi / 2} \sin x d x \\
& =\sqrt{2}[-\cos x]_{0}^{\pi / 2} \\
& =\sqrt{2}[-\cos (\pi / 2)-(-\cos 0)]=\sqrt{2}
\end{aligned}
$$

