2 Pages!
10/27/2016

Quiz 7, Math 2850-005
Solutions Name \qquad

1. Sketch the region of integration and write and equivalent double integral with the order of integration reversed. You need NOT evaluate.

$$
\begin{equation*}
\int_{0}^{1} \int_{1}^{e^{x}} d y d x \tag{4}
\end{equation*}
$$

The region is bounded above by the curve $y=e^{x}$ and below by the line $y=1$, for $0 \leq x \leq 1$. Reverse the order
2. Sketch the region of integration, reverse the order of integration and evaluate the integral

$$
\begin{equation*}
\int_{0}^{2 \sqrt{\ln 3}} \int_{y / 2}^{\sqrt{\ln 3}} e^{x^{2}} d x d y \tag{7}
\end{equation*}
$$

The region of integration is bounded on the left by the line $x=y / 2$ and on the $\mathrm{Y}_{\uparrow} \quad$ right by the vertical line $x=\sqrt{\ln 3}$ for and $0 \leq y \leq 2 \sqrt{\ln 3}$. Sketch the region. (It

where the u-substitution with $u=x^{2}$ was applied to evaluate the last integral.
3. Change the Cartesian integral into an equivalent polar integral. Then evaluate the polar integral. (Suggestion: Sketch the region of integration.)

$$
\begin{equation*}
\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} x+2 y d y d x \tag{9}
\end{equation*}
$$

The region of integration is bounded below by the line $y=x$ and above by the circle $y=\sqrt{2-x^{2}}\left(\right.$ or $\left.x^{2}+y^{2}=2\right)$, for $0 \leq x \leq 1$. This is the eighth of a disk of radius $\sqrt{2}: 0 \leq r \leq \sqrt{2}$ and $\pi / 4 \leq \theta \leq \pi / 2$. Therefore

$$
\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} x+2 y d y d x=\int_{\pi / 4}^{\pi / 2} \int_{0}^{\sqrt{2}}(r \cos \theta+2 r \sin \theta) r d r d \theta
$$

Evaluate

$$
\begin{aligned}
\int_{\pi / 4}^{\pi / 2} \int_{0}^{\sqrt{2}}(r \cos \theta+2 r \sin \theta) r d r d \theta & =\left.\int_{\pi / 4}^{\pi / 2} \frac{1}{3} r^{3}\right|_{0} ^{\sqrt{2}}(\cos \theta+2 \sin \theta) d \theta \\
& =\frac{2^{3 / 2}}{3}[\sin \theta-2 \cos \theta]_{\pi / 4}^{\pi / 2} \\
\mathrm{x}^{2}+\mathrm{y}^{2}=2 & =\frac{2^{3 / 2}}{3}[1-(\sqrt{2} / 2-2 \sqrt{2} / 2)] \\
& =\frac{2^{3 / 2}}{3}[(2+\sqrt{2}) / 2]=\frac{2 \sqrt{2}+2}{3}
\end{aligned}
$$

