2 Pages!
11/17/2016

Quiz 8, Math 2850-005

1. Find the volume of the region enclosed by the cylinder $x^{2}+y^{2}=4$ and the planes $z=0$ and $y+z=4$.
This region D is best described in polar coordinates. The upper bound is $z=$ $4-y=4-r \sin \theta$. The base of the solid in the plane $z=0$ is the interior of the circle of radius 2. The volume is therefore

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{2}(4-r \sin \theta) r d r d \theta \\
& =\int_{0}^{2 \pi}\left[2 r^{2}-\frac{1}{3} r^{3} \sin \theta\right]_{0}^{2} d \theta \\
& =\int_{0}^{2 \pi}\left[8-\frac{8}{3} \sin \theta\right] d \theta \\
& =\left[8-\frac{8}{3} \sin \theta\right]_{0}^{2 \pi}=16 \pi
\end{aligned}
$$

2. Evaluate $\int_{C} x d s$ where C is the parabolic curve, $x=t, y=t^{2}$, from $(0,0)$ to $(2,4)$.

The parabolic curve is traced out over the interval $0 \leq t \leq 2$. We further have $d s=\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}=\sqrt{1+(2 t)^{2}} d t$. Therefore

$$
\int_{C} x d s=\int_{0}^{2} t\left(1+4 t^{2}\right)^{1 / 2} d t=\frac{1}{8} \int_{1}^{17} u^{1 / 2} d u=\left.\frac{1}{8} \frac{2}{3} u^{3 / 2}\right|_{1} ^{17}=\frac{1}{12}\left[17^{3 / 2}-1\right]
$$

where we have used u substitution with $u=1+4 t^{2}$ so that $(1 / 8) d u=d t$.
(8) 3. Find the volume of the solid enclosed by the cardioid of revolution $\rho=1-\cos \phi$.

Here spherical coordinates is appropriate. Because the solid is a solid of revolution its intersection with any half plane $\theta=$ constant is illustrative of the shape of the solid. The volume is

$$
p=1-\cos \phi
$$

$$
\theta=\text { constant. (Rotate about tho } z-a x i
$$

to get tho solid)

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1-\cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1-\cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{1}{3} \rho^{3}\right|_{0} ^{1-\cos \phi} \sin \phi d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{1}{3}(1-\cos \phi)^{3} \sin \phi d \phi d \theta
\end{aligned}
$$

To evaluate the integral over ϕ we substitute $u=1-\cos \phi$ so that $d u=\sin \phi$. After integration and substituting back we have

$$
\begin{aligned}
V & =\left.\int_{0}^{2 \pi} \frac{1}{12}(1-\cos \phi)^{4}\right|_{0} ^{\pi} d \theta \\
& =\int_{0}^{2 \pi} \frac{2^{4}}{12} d \theta \\
& =\frac{2^{4}}{12}(2 \pi)=\frac{8 \pi}{3}
\end{aligned}
$$

