\qquad
2. Find the flux of $\vec{F}=x \vec{i}+y \vec{j}$ outward across the ellipse $\vec{r}(t)=\cos t \vec{i}+4 \sin t \vec{j}$, $0 \leq t \leq 2 \pi$.

The flux is $\int_{C} M d y-N d x$. Along the curve $x=\cos t$ and $y=4 \sin t$ so that flux is

$$
\begin{aligned}
\int_{C} M d y-N d x & =\int_{0}^{2 \pi} \cos t(4 \cos t)-4 \sin t(-\sin t) d t \\
& =\int_{0}^{2 \pi} 4 d t=8 \pi
\end{aligned}
$$

3. Evaluate the line integral by finding a potential function corresponding to the vector field

$$
\int_{(1,1,1)}^{(1,2,3)} 3 x^{2} d x+\frac{z^{2}}{y} d y+2 z \ln y d z
$$

(You may assume that the vector field $\vec{F}=3 x^{2} \vec{i}+\frac{z^{2}}{y} \vec{j}+2 z \ln y \vec{k}$ is conservative.)
We need the potential f so that $\nabla f=\vec{F}$. We integrate $\partial f / \partial x=3 x^{2}$ with respect to x regarding y and z as constants. Therefore $f(x, y, z)=x^{3}+g(y, z)(g(y, z)$ is the constant of integration.) Next we want $\partial f / \partial y=z^{2} / y$ so that $\partial g / \partial y=z^{2} / y$ so that $g(y, z)=z^{2} \ln y+h(z)$ and $f(x, y, z)=x^{3}+z^{2} \ln y+h(z)$. Now we want $\partial f / \partial z=2 z \ln y$ or $2 z \ln y+h^{\prime}(z)=2 z \ln y$. Therefore $h^{\prime}(z)=0$ and so $h(z)=C$ is a constant. Finally we have $f(x, y, z)=x^{3}+z^{2} \ln y+C$. We now apply the fundamental theorem of line integrals

$$
\begin{aligned}
\int_{(1,1,1)}^{(1,2,3)} 3 x^{2} d x+\frac{z^{2}}{y} d y+2 z \ln y d z & =f(1,2,3)-f(1,1,1) \\
& =1^{3}+3^{2} \ln 2+C-\left(1^{3}+1^{2} \ln 1+C\right)=9 \ln 2
\end{aligned}
$$

