Instr: Denis White Name \qquad
(9) 1. Identify and sketch the graph of the surface $4 x^{2}+y^{2}-z^{2}=1$.
2. The position of a particle at time t is $\vec{r}(t)=t \ln (t+1) \vec{i}+(t+1)^{1 / 2} \vec{j}+(t+1)^{3 / 2} \vec{k}$
(a) Find the velocity and acceleration vectors
(b) Find an equation for the tangent line to the path (in part (a)) of the particle when $t=0$.
3. Solve the initial problem for \vec{r} as a vector function of t if

Differential equation: $\frac{d \vec{r}}{d t}=t e^{-t} \vec{i}+e^{-t} \vec{j}-e^{-2 t} \vec{k}$
Initial Condition: $\vec{r}(0)=-\vec{i}+\vec{j}+2 \vec{k}$
(8) 4. Find the length of the curve $\vec{r}=\frac{1}{3} t^{3 / 2} \vec{i}+2 t \vec{j}+\frac{1}{\sqrt{3}} t^{3 / 2} \vec{k}, 2 \leq t \leq 7$.
5. (a) Find and sketch the domain of the function $f(x, y)=\sqrt{x^{2}+4 y^{2}-9}$.
(b) Find an equation for and sketch the graph of the level curve of the function $f(x, y)$ of part (a) that passes through the point (3,-1).
(7) 6. Find the limit. $\lim _{(x, y) \rightarrow(2,-2)} \frac{x+y}{x^{2}-y^{2}}$
7. By considering different paths of approach, show that $f(x, y)$ has no limit as (9) $(x, y) \rightarrow(0,0)$.

$$
f(x, y)=\frac{y^{2}+x y}{x^{2}+y^{2}}
$$

(9) 8. Find all the second partial derivatives of $f(x, y)=\ln \left(x+y^{2}\right)$
9. Suppose we substitute $x=u^{2}-v^{2}$ and $y=2 u v$ in a differentiable function $w=f(x, y)$. Show that

$$
\frac{1}{2} \frac{\partial w}{\partial u}=\frac{\partial f}{\partial x} u+\frac{\partial f}{\partial y} v
$$

and derive a comparable expression for $\partial w / \partial v$.
10. (a) Find the gradient of the function $f(x, y, z)=x y+2 y z+3 x z$.
(b) Find the (directional) derivative of f at $P_{0}(1,3,-1)$ in the direction of $\vec{u}=$ $\vec{i}-\vec{j}+2 \vec{k}$.

