\qquad
(9)

1. Identify and sketch the graph of the surface $4 x^{2}+y^{2}-z^{2}=1$.

This is an elliptic hyperboloid of one sheet. The planes perpendicular to the z-axis (parallel to the $x y$-plane) intersect the surface in ellipses. Perpendicular to the x and y-axis teh cross sections are hyperbolas.
2. The position of a particle at time t is $\vec{r}(t)=t \ln (t+1) \vec{i}+(t+1)^{1 / 2} \vec{j}+(t+1)^{3 / 2} \vec{k}$
(a) Find the velocity and acceleration vectors.

The velocity is

$$
\vec{v}(t)=\vec{r}^{\prime}(t)=\left(\ln (t+1)+\frac{t}{t+1}\right) \vec{i}+\frac{1}{2}(t+1)^{-1 / 2} \vec{j}+\frac{3}{2}(t+1)^{1 / 2} \vec{j}
$$

and the acceleration is

$$
\vec{a}(t)=\vec{v}^{\prime}(t)=\left(\frac{1}{t+1}+\frac{(t+1)-t}{(t+1)^{2}}\right) \vec{i}-\frac{1}{4}(t+1)^{-3 / 2} \vec{j}+\frac{3}{4}(t+1)^{-1 / 2} \vec{j}
$$

(b) Find an equation for the tangent line to the path (in part (a)) of the particle when $t=0$.
A tangent vector is $\vec{v}(0)=\frac{1}{2} \vec{j}+\frac{3}{2} \vec{k}$. We want the tangent line at $\vec{r}(0)=\vec{j}+\vec{k}$ and that line is The tangent line is

$$
\vec{r}(t)=\vec{j}+\vec{k}+t\left(\frac{1}{2} \vec{j}+\frac{3}{2} \vec{k}\right)
$$

3. Solve the initial problem for \vec{r} as a vector function of t if

Differential equation: $\frac{d \vec{r}}{d t}=t e^{-t} \vec{i}+e^{-t} \vec{j}-e^{-2 t} \vec{k}$
Initial Condition: $\vec{r}(0)=-\vec{i}+\vec{j}+2 \vec{k}$

We integrate:

$$
\vec{r}(t)=\int t e^{-t} d t \vec{i}+\int e^{-t} d t \vec{j}-\int e^{-2 t} d t \vec{k}=
$$

The first integral can be done by parts $\left(\int u d v=u v-\int v d u\right.$ with $u=t, d v=$ $\left.e^{-t} d t\right)$

$$
\vec{r}(t)=\left(-t e^{-t}-e^{-t}\right) \vec{i}-e^{-t} \vec{j}+\frac{1}{2} e^{-2 t} d t \vec{k}+\vec{C}
$$

It remains to find \vec{C}. By the initial condition

$$
-\vec{i}+\vec{j}+2 \vec{k}=\vec{r}(0)=-\vec{i}-\vec{j}+\frac{1}{2} \vec{k}+\vec{C}
$$

so that $\vec{C}=2 \vec{j}+(3 / 2) \vec{k}$ and therefore

$$
\begin{equation*}
\vec{r}(t)=\left(-t e^{-t}-e^{-t}\right) \vec{i}+\left(2-e^{-t}\right) \vec{j}+\frac{1}{2}\left(e^{-2 t}+3\right) d t \vec{k} \tag{8}
\end{equation*}
$$

4. Find the length of the curve $\vec{r}=\frac{1}{3} t^{3 / 2} \vec{i}+2 t \vec{j}+\frac{1}{\sqrt{3}} t^{3 / 2} \vec{k}, 0 \leq t \leq 5$.

We need the speed. Differentiate

$$
\vec{v}(t)=\vec{r}^{\prime}(t)=\frac{1}{3} \frac{3}{2} t^{1 / 2} \vec{i}+2 \vec{j}+\frac{1}{\sqrt{3}} \frac{3}{2} t^{1 / 2} \vec{k}=\frac{1}{2} t^{1 / 2} \vec{i}+2 \vec{j}+\frac{\sqrt{3}}{2} t^{1 / 2} \vec{k}
$$

so that $\left|\vec{r}^{\prime}(t)\right|=\sqrt{t / 4+4+3 t / 4}=(4+t)^{1 / 2}$. The length is therefore

$$
\int_{0}^{5}(4+t)^{1 / 2} d t=\left.\frac{2}{3}(4+t)^{3 / 2}\right|_{0} ^{5}=\frac{2}{3}\left[(9)^{3 / 2}-(4)^{3 / 2}\right]=\frac{38}{3}
$$

5. (a) Find and sketch the domain of the function $f(x, y)=\sqrt{x^{2}+4 y^{2}-9}$.

The domain is the set $\left\{(x, y): x^{2}+4 y^{2} \geq 9\right\}$ which is the exterior of an ellipse.
(b) Find an equation for and sketch the graph of the level curve of the function $f(x, y)$ of part (a) that passes through the point ($3,-1$).

Since $f(3,-1)=2$ we are looking for the level curve $f(x, y)=2$ which is $x^{2}+4 y^{2}=13$ which is an ellipse.
6. Find the limit. $\lim _{(x, y) \rightarrow(2,-2)} \frac{x+y}{x^{2}-y^{2}}$

This limit is of the form $0 / 0$ and so we look for a cancellation in the fraction

$$
\lim _{(x, y) \rightarrow(2,-2)} \frac{x+y}{x^{2}-y^{2}}=\lim _{(x, y) \rightarrow(2,-2)} \frac{x+y}{(x+y)(x-y)}=\lim _{(x, y) \rightarrow(2,-2)} \frac{1}{x-y}=\frac{1}{4}
$$

7. By considering different paths of approach, show that $f(x, y)$ has no limit as $(x, y) \rightarrow(0,0)$.

$$
\begin{equation*}
f(x, y)=\frac{y^{2}+x y}{x^{2}+y^{2}} \tag{9}
\end{equation*}
$$

Consider

$$
f(r \cos \theta, r \sin \theta)=\frac{\left(r(\sin \theta)^{2}+r \cos \theta r \sin \theta\right.}{r^{2}}=(\sin \theta)^{2}+\cos \theta r \sin \theta
$$

and so

$$
\lim _{r \rightarrow 0} f(r \cos \theta, r \sin \theta)=(\sin \theta)^{2}+\cos \theta r \sin \theta
$$

and this limit depends on θ which means it depends on the path of approach to $(0,0)$ and so $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
(9) 8. Find all the second partial derivatives of $f(x, y)=\ln \left(x+y^{2}\right)$

There are three second distinct partial derivatives. We first need the first partials.

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{1}{x+y^{2}} \\
\frac{\partial f}{\partial y} & =\frac{2 y}{x+y^{2}} \\
\frac{\partial^{2} f}{\partial x^{2}} & =-\frac{1}{\left(x+y^{2}\right)^{2}} \\
\frac{\partial^{2} f}{\partial x \partial y} & =-\frac{2 y}{\left(x+y^{2}\right)^{2}} \\
\frac{\partial^{2} f}{\partial y^{2}} & =\frac{2\left(x+y^{2}\right)-4 y^{2}}{\left(x+y^{2}\right)^{2}}
\end{aligned}
$$

and of course the order of differentiation for the second mixed partial derivative is inconsequential.
9. Suppose we substitute $x=u^{2}-v^{2}$ and $y=2 u v$ in a differentiable function $w=f(x, y)$. Show that

$$
\frac{1}{2} \frac{\partial w}{\partial u}=\frac{\partial f}{\partial x} u+\frac{\partial f}{\partial y} v
$$

and derive a comparable expression for $\partial w / \partial v$.
By the chain rule in two variables:

$$
\frac{\partial w}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u}
$$

but $\partial x / \partial u=2 u$ and $\partial y / \partial u=2 v$ so that

$$
\frac{\partial w}{\partial u}=\frac{\partial f}{\partial x} 2 u+\frac{\partial f}{\partial y} 2 v
$$

and dividing by 2 gives the desired expression. Similarly we have

$$
\frac{\partial w}{\partial v}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}
$$

but $\partial x / \partial v=-2 v$ and $\partial y / \partial v=2 u$ so that

$$
\frac{\partial w}{\partial v}=\frac{\partial f}{\partial x}(-2 v)+\frac{\partial f}{\partial y} 2 u
$$

and so we have

$$
\frac{1}{2} \frac{\partial w}{\partial v}=-\frac{\partial f}{\partial x} v+\frac{\partial f}{\partial y} u
$$

10. (a) Find the gradient of the function $f(x, y, z)=x y+2 y z+3 x z$.

The gradient is $\nabla f=(y+3 z) \vec{i}+(x+2 z) \vec{j}+(2 y+3 x) \vec{k}$
(b) Find the (directional) derivative of f at $P_{0}(1,3,-1)$ in the direction of $\vec{u}=$ $\vec{i}-\vec{j}+2 \vec{k}$.
At $P_{0}(1,3,-1)$, we have $\nabla f(1,3,-1)=-\vec{j}+3 \vec{k}$ so that the directional derivative in the direction of f in the direction \vec{u} is

$$
D_{\vec{u}} f(1,3,-1)=\frac{\nabla f(1,3,-1) \cdot \vec{u}}{|\vec{u}|}=\frac{7}{\sqrt{6}}
$$

