Test 1, Math 2850-005

1. Identify and sketch the graph of the surface $x^{2}+y^{2} / 4-z^{2}=0$. This is an elliptic cone.

2. The position of a particle at time t is $\vec{r}(t)=t e^{-t} i+2 \cos 3 t \vec{j}+2 \sin 3 t \vec{k}$
(a) Find the velocity.

The velocity is

$$
\vec{v}(t)=\vec{r}^{\prime}(t)=\left(e^{-t}-t e^{-t}\right) \vec{i}-6 \sin 3 t \vec{j}+6 \cos 3 t \vec{k}
$$

(b) Find the unit tangent vector $\vec{T}(t)$ to the curve (in Part(a)). Then express the velocity in terms of $\vec{T}(t)$ and the speed.
We need the speed

$$
|\vec{v}(t)|=\left(\left(e^{-t}-t e^{-t}\right)^{2}+(-6 \sin 3 t)^{2}+(6 \cos 3 t)^{2}\right)^{1 / 2}=\left(e^{-2 t}(1-t)^{2}+6\right)^{1 / 2}
$$

so that

$$
\vec{T}(t)=\frac{\vec{v}}{|\vec{v}|}=\left(e^{-2 t}(1-t)^{2}+6\right)^{-1 / 2}\left[\left(e^{-t}-t e^{-t}\right) \vec{i}-6 \sin 3 t \vec{j}+6 \cos 3 t \vec{k}\right]
$$

(c) Find parametric equations for the tangent line to the path (in part (a)) of the particle when $t=0$.

The tangent line is in the direction of $\vec{v}(0)=\vec{i}+6 \vec{k}$ and passes through $\vec{r}(0)=2 \vec{j}$ and so has parameterization

$$
\begin{equation*}
\vec{R}(t)=2 \vec{j}+t(\vec{i}+6 \vec{k})=t \vec{i}+2 \vec{j}+6 t \vec{k} \tag{9}
\end{equation*}
$$

3. Find the length of the curve $\vec{r}=t \vec{i}+\frac{4}{3} t^{3 / 2} \vec{j}+t^{2} \vec{k}, 0 \leq t \leq 5$.

We need the speed. First the velocity is $\vec{r}^{\prime}(t)=\vec{i}+2 t^{1 / 2} \vec{j}+2 t \vec{k}$ so that the speed is $\left|\vec{r}^{\prime}(t)\right|=\left(1+4 t+4 t^{2}\right)^{1 / 2}=\left((1+2 t)^{2}\right)^{1 / 2}=|1+2 t|$ However we are interested only in $0 \leq t \leq 5$ and so no absolute value is needed. The length of the curve is

$$
\int_{0}^{5}\left|\vec{r}^{\prime}(t)\right| d t=\int_{0}^{5} 1+2 t d t=t+\left.t^{2}\right|_{0} ^{5}=30
$$

4. Solve the initial problem for \vec{r} as a vector function of t if

Differential equation: $\frac{d \vec{r}}{d t}=t \cos \left(t^{2}\right) \vec{i}+t \sin \left(t^{2}\right) \vec{j}+\frac{1}{t+1} \vec{k}$
Initial Condition: $\vec{r}(0)=-\frac{1}{2} \vec{i}+\vec{j}+2 \vec{k}$
We can find \vec{r} by integrating except there will be a constant of integration.

$$
\begin{aligned}
\vec{r}(t) & =\int t \cos t^{2} \vec{i}+t \sin t^{2} \vec{j}+\frac{1}{t+1} \vec{k} d t \\
& =\int \frac{1}{2} \cos u d u \vec{i}+\int \frac{1}{2} \sin u d u \vec{k}+\ln (t+1) \vec{k}+\vec{C} \\
& =\frac{1}{2} \sin \left(t^{2}\right) \vec{i}-\frac{1}{2} \cos \left(t^{2}\right) \vec{j}+\ln (t+1) \vec{k}+\vec{C}
\end{aligned}
$$

where we used u-substitution with $u=t^{2}$ and $d u=2 t d t$ to evaluate two of the integrals.
We can find \vec{C} the constant of integration by using the equation $\vec{r}(0)=-\frac{1}{2} \vec{i}+$ $\vec{j}+2 \vec{k}$. Substitute $t=0$ into our expression for $\vec{r}(t)$:

$$
\vec{r}(0)=-\frac{1}{2} \vec{j}+\vec{C}
$$

so we must have $\vec{C}=-\frac{1}{2} \vec{i}+\frac{3}{2} \vec{j}+2 \vec{k}$ so that

$$
\vec{r}(t)=\frac{1}{2}\left(\sin \left(t^{2}\right)-1\right) \vec{i}-\frac{1}{2}\left(\cos \left(t^{2}\right)-3\right) \vec{j}+(\ln (t+1)+2) \vec{k}
$$

5. Find the limit. $\lim _{(x, y) \rightarrow(1,3)} \frac{y-3 x}{y^{2}-2 x y-3 x^{2}}$

This limit is of the form $0 / 0$ and so we look for some cancellation: Factor the bottom: $y^{2}-2 x y-3 x^{2}=(y-3 x)(y+x)$ so that

$$
\lim _{(x, y) \rightarrow(1,3)} \frac{y-3 x}{y^{2}-2 x y-3 x^{2}}=\lim _{(x, y) \rightarrow(1,3)} \frac{y-3 x}{(y-3 x)(y+x)} \lim _{(x, y) \rightarrow(1,3)} \frac{1}{y+x}=\frac{1}{4}
$$

6. For the function $f(x, y)=\sqrt{x^{2}+4 y^{2}-16}$.
(a) Find and sketch the domain of f.

The expression for f makes sense provided $x^{2}+4 y^{2}-16 \geq 0$ so that we do not take the square root of a negative number. The domain is therefore all (x, y) so that

$$
\frac{x^{2}}{16}+\frac{y^{2}}{4} \geq 1
$$

and this is the exterior of an ellipse with major axis in the x-direction and minor in the y-direction. Sketch:

(b) Find an equation for the level curve of $f(x, y)$ that passes through the point $(3,-2)$. Include a graph of that level curve in your sketch of Part (a).
Since $f(3,-2)=3$ the level curve is $\sqrt{x^{2}+4 y^{2}-16}=3$ (that is $f=3$) and simplifying we get

$$
\frac{x^{2}}{25}+\frac{y^{2}}{25 / 4}=1
$$

which is an ellipse. We graph it on the graph in Part (a).
7. Suppose we substitute $x=(u+v) / \sqrt{2}$ and $y=(-u+v) / \sqrt{2}$ (which corresponds to rotating the $x y$-plane by 45 degrees) in a differentiable function $w=f(x, y)$. Express $\partial w / \partial u$ in terms of $\partial w / \partial x$ and $\partial w / \partial y$
By the chain rule

$$
\begin{aligned}
\frac{\partial w}{\partial u} & =\frac{\partial w}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial u} \\
& =\frac{\partial w}{\partial x} \frac{1}{\sqrt{2}}-\frac{\partial w}{\partial y} \frac{1}{\sqrt{2}}
\end{aligned}
$$

8. (a) Find the gradient of the function $f(x, y)=y^{2} e^{x y}$.

$$
\nabla f=y^{3} e^{x y} \vec{i}+\left(2 y+x y^{2}\right) e^{x y} \vec{j}
$$

(b) Find the (directional) derivative of f at $P_{0}(0,2)$ in the direction of $\vec{u}=\vec{i}-3 \vec{j}$. We need $\nabla f(0,2)=8 \vec{i}+4 \vec{j}$ and the formula for the directional derivative gives

$$
D_{\vec{u}} f(0,2)=\frac{\nabla f(0,2) \cdot \vec{u}}{|\vec{u}|}=\frac{(8 \vec{i}+4 \vec{j}) \cdot(\vec{i}-3 \vec{j})}{\sqrt{1^{2}+(-3)^{2}}}=\frac{-4}{\sqrt{10}}
$$

(c) Find the direction \vec{u} so that $D_{\vec{u}} f(0,2)$ is largest. Find the derivative in that direction.
The direction that maximizes the directional derivative is $\nabla f /|\nabla f|$ which is $(8 \vec{i}+4 \vec{j}) / \sqrt{8^{2}+4^{2}}=(2 \vec{i}+\vec{j}) / \sqrt{5}$. The derivative in that direction is just $|\nabla f|=\sqrt{80}$

