Test 1, Math 2850-005 Page 1 of 5 Pages
9/29/16 Solutions Name

1. Identify and sketch the graph of the surface 2* +y?/4 — 2% = 0.

(12) This is an elliptic cone.
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2. The position of a particle at time ¢ is r(t) g +§ 3tj + 2sin 3tk
(13)

(a) Find the velocity.
The velocity is
#(t) = 7'(t) = (et — te™)7 — 6sin 3t] + 6 cos 3tk
(b) Find the unit tangent vector T(t) to the curve (in Part(a)). Then express

the velocity in terms of T() and the speed.
We need the speed

[0(t)] = ((e7* — te™*)* + (—6'sin 3t) + (6 cos 3¢)?) 12 (e7(1—1¢)* +6) 72
so that
T(t) = = = (e*(1—t)?+ 6)—1/2 [(e't — te™*)] — 6'sin 345 + 6 cos BtE]
(c) Find parametric equations for the tangent line to the path (in part (a)) of
the particle when ¢ = 0.

The tangent line is in the direction of #(0) = i+ 6k and passes through 7(0) = 27
and so has parameterization

R(t) = 25 + (i + 6k) = i + 2] + 6tk

(9) 3. Find the length of the curve 7 = ti + 4£3/2] + 2k, 0 < ¢ < 5,



. Find the limit. lim

We need the speed. First the velocity is 7 (¢) = i + 2t1/27 + 2tk so that the speed
is |7 (t)| = (14 4t +4t2)Y2 = ((1 4 2t)%)Y/2 = |1 + 2t| However we are interested
only in 0 < ¢ < 5 and so no absolute value is needed. The length of the curve is

5 5
/[ff’(t)|dt=/ |4 2tdt = ¢+ 823 = 30
0 0

. Solve the initial problem for 7 as a vector function of ¢ if

T - 1

== thOSEtQ)i i—tsin(tz)j o
=—1i4j+2k

Differential equation: k

Initial Condition: 7(0)

We can find 7 by integrating except there will be a constant of integration.

— - 1 bud
F(t) = | teost? +tsint’j + ——kdt
7(t) /cos i + tsin j—{—t+1

1 - 1 = -
=/—2—cosuduz'+/§Sinuduk+ln(t+l)k—l-

Qu

— 1 — -3 —
:% sin(#)i — 5 cos(t)] +In(t + DF + €

where we used u—substitution with u = t? and du = 2t dt to evaluate two of the
integrals.

We can find C the constant of integration by using the equation 7(0) = —1i4
7+ 2k. Substitute ¢ = 0 into our expression for (t):

F(o)=—-2—‘+é

so we must have C = T T 2k so that

[um—t

Ft) = %(Sin(tZ) — 1) = G (cos(#?) ~ 3)] + (In(e + 1) + 2)f

Yy — 3T
(@)~ (1,3) Y2 — 2y — 3:52

This limit is of the form 0/0 and so we look for some cancellation: Factor the
bottom: y% — 2zy — 3z% = (y — 3z)(y + ) so that

y— 3z ) y— 3T

1
lim = lim lim =
@y)>(1,3) ¥2 — 22y — 322 (e)—(18) (¥ — 3T)(y + z) @)1 y+z 4




6. For the function f(z,y) = /22 + 492 — 16.

(a) Find and sketch the domain of f.

The expression for f makes sense provided 22 + 4y? — 16 > 0 so that we do
not take the square root of a negative number. The domain is therefore all
(z,y) so that

(12)
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and thls is the exterlor of an elhpse Wlth major axis in the z—direction and
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(b) Find an equétion for the level curve of f(x, ) that passes through the point
(3,-2). Include a graph of that level curve in your sketch of Part (a).

Since f(3,—2) = 3 the level curve is /22 +4y? — 16 = 3 (that is f = 3)

and simplifying we get
m2 y?

25 T 25/d
which is an ellipse. We graph it on the graph in Part (a).

7. Suppose we substitute z = (u+v)/v2 and y = (—u+v)/v/2 (which corresponds
to rotating the zy-plane by 45 degrees) in a differentiable function w = f(z,y).
(8) Express Ow/du in terms of dw/8z and dw/dy

By the chain rule

ow Owdz  Ow By
0 oz ou | Oy du
_8w 1 Jw 1
T 02 Oy 2

8. (a) Find the gradient of the function f(z,y) = y2e®.
(14)
Vf =4+ (2y + zy’)e™



(b) Find the (directional) derivative of f at Fy(0, 2) in the direction of @ = i—37.
We need Vf(0,2) = 8 + 47 and the formula for the directional derivative
gives

VF0,2)-@ (8i+47)-(G—37) —4
Da‘f (Oa 2) = pan = —
Y/ e e i

(c) Find the direction 4 so that Dy f(0,2) is largest. Find the derivative in that
direction.

The direction that maximizes the directional derivative is Vf/|V f| which
is(B7 + 47) //8% + 4% = (20 + 7)/+/5. The derivative in that direction is just
IV f| = /80




