\qquad

1. Consider the surface $x^{4}+3 x z+z^{2}+\cos (\pi x y)=-2$ and the point $P_{0}(-1,1,2)$ on that surface.
(a) the tangent plane at P_{0}
(b) the normal line to the surface at P_{0}.
2. Sketch the region of integration and write an equivalent double integral with the the order of integration reversed. Do NOT evaluate.

$$
\begin{equation*}
\int_{1}^{e} \int_{0}^{\ln x} x^{2} y d y d x \tag{10}
\end{equation*}
$$

3. Test the function $f(x, y)=3 x y-x^{3}-y^{3}$ for local maxima, minima and saddle points.
4. Find the absolute maximum and minimum values of $f(x, y)=2 x^{2}+y^{2}-4 y$ on the closed triangular region R in the $x y$-plane, bounded by the lines $y=4, y=x$ and $y=-x$. (Show all your work.)
5. Find the center of mass of a thin plate of constant density δ, bounded by the parabola $y=x^{2}$ and the line $y=4$. (Suggestion: it should be obvious from your picture that $\bar{x}=0$ by symmetry. It suffices to compute \bar{y}. Assume the mass is $32 \delta / 3$.)
6. Change the Cartesian integral to an equivalent polar integral. Then evaluate the polar integral

$$
\begin{equation*}
\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{0} \frac{x e^{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}} d y d x \tag{13}
\end{equation*}
$$

7. Set up but do not evaluate a (triple) iterated integral for the mass of the solid in the first octant bounded by the coordinate planes, the plane $z+y=3$ and the cylinder $x^{2}+y^{2}=4$ if the density is $\delta(x, y, z)=x$. Do NOT evaluate.
