Test 2, Math 2850

1. Consider the surface $x^{4}+3 x z+z^{2}+\cos (\pi x y)=-2$ and the point $P_{0}(-1,1,2)$ on that surface. Find an equation of
(a) the tangent plane at P_{0}

For $F(x, y, z)=x^{4}+3 x z+z^{2}+\cos (\pi x y)$, we know that ∇F is perpendicular to the level surface.

$$
\begin{aligned}
\nabla F(x, y, z) & =\left(4 x^{3}+3 z-\sin (\pi x y) \pi y\right) \vec{i}-\sin (\pi x y) \pi x \vec{j}+(3 x+2 z) \vec{k} \\
\nabla F(-1,1,2) & =2 \vec{i}+\vec{k}
\end{aligned}
$$

so that the tangent plane $2(x-(-1))+(z-2)=0$ or $2 x+z=0$
(b) the normal line to the surface at P_{0}.

The normal line is $\vec{r}(t)=-\vec{i}+\vec{j}+2 \vec{k}+t(2 \vec{i}+\vec{k})$
2. Sketch the region of integration and write an equivalent double integral with the the order of integration reversed. Do NOT evaluate.

$$
\int_{1}^{e} \int_{0}^{\ln x} x^{2} y d y d x
$$

The region is $0 \leq y \leq \ln x, 1 \leq x \leq e$. Sketch. The region is also $1 \leq x \leq e^{y}$, $0 \leq y \leq 1$:

$$
\begin{gathered}
\int_{1}^{e} \int_{0}^{\ln x} x^{2} y d y d x=\int_{0}^{1} \int_{e^{y}}^{e} x^{2} y d x d y \\
y=\ln x\left(x=e^{y}\right)
\end{gathered}
$$

3. Test the function $f(x, y)=3 x y-x^{3}-y^{3}$ for local maxima, minima and saddle points.
Check for critical points. These occur when $\nabla f=\overrightarrow{0}$ or f is not differentiable but f is differentiable everywhere (because the partial clerivatives exist and are continuous). Compute $\nabla f=\left(3 y-3 x^{2}\right) \vec{i}+\left(3 x-3 y^{2}\right) \vec{j}$. Set $\nabla f=\overrightarrow{0}$ gives $3 y-3 x^{2}=0$ and $3 x-3 y^{2}=0$. Therefore $y=x^{2}$ and $x=y^{2}$ so that $x=\left(x^{2}\right)^{2}=$ x^{4}. Therefore $x\left(1-x^{3}\right)=0$ which says $x=0$ (in which case $y=0$) or $x=1$ (in which case $y=1$). The critical points are $(0,0)$ and $(1,1)$.

Consider first $(0,0)$. We have $f_{x x}=-6 x, f_{x y}=3, f_{y y}=-6 y$ At $(0,0), f_{x x}=$ $0=f_{y y}$ so that $f_{x x} f_{y y}-f_{x y}^{2}=-9$ so that $(0,0)$ is a saddle point by the second derivative test.
Consider next (1,1). At $(1,1), f_{x x}=-6, f_{y y}=-6$, so that $f_{x x} f_{y y}-f_{x y}^{2}=27$. Since $f_{x x}<0$ this says $(1,1)$ is a local maximum.
4. Find the absolute maximum and minimum values of $f(x, y)=3 x^{2}+y^{2}-4 y$ on the closed triangular region R in the $x y$-plane bounded by the lines $y=4 y=x$ and $y=-x$. (Show all your work.)
Sketch the triangular region. First we check the interior for critical points. We see

$$
\begin{equation*}
\nabla f=6 x \vec{i}+(2 y-4) \vec{j} \tag{18}
\end{equation*}
$$

Set $\nabla f=\overrightarrow{0}$ and we see $x=0$ and $y=2$ so that $(0,2)$ is a critical point. Since f is differentiable everywhere this is the only critical point.

Next we check the edges. Consider first the line $y=4(-4<x<4) f(x, 4)=3 x^{2}$ and this function has a minimum at $x=0\left(\operatorname{set}(d / d x) 3 x^{2}=0\right)$. We get the point $(0,4)$.
The second edge is $y=x 0<x<4$ where $f(x, x)=3 x^{2}+x^{2}-4 x=4 x^{2}-4 x$. Check for maxima and minima. Differentiate $(d / d x)\left(4 x^{2}-4 x\right)=8 x-4$. The derivative is 0 when $x=1 / 2$ so that we get $(1 / 2,1 / 2)$ is a second possible point. The third and final edge is $y=-x,-4 \leq x \leq 0$ where $f(x,-x)=3 x^{2}+x^{2}+4 x$ Differentiate $(d / d x)\left(4 x^{2}+4 x\right)=8 x+4$ and this is 0 when $x=-1 / 2$ Therefore $(-1 / 2,1 / 2)$ is a third point.

The corners are $(-4,4),(4,4)$ and $(0,0)$.
Evaluate f at all the points obtained.

$$
\begin{array}{rl}
\text { Point } P & \mathrm{f}(\mathrm{P}) \\
\hline(0,2) & \mathrm{f}(0,2)=-4 \\
(0,4) & \mathrm{f}(0,4)=0 \\
(1 / 2,1 / 2) & \mathrm{f}(1 / 2,1 / 2)=-1 \\
(-1 / 2,1 / 2) & \mathrm{f}(-1 / 2,1 / 2)=-1 \\
(-4,4) & \mathrm{f}(-4,4)=48 \\
(4,4) & \mathrm{f}(4,4)=48 \\
(0,0) & f(0,0)=0
\end{array}
$$

We see that f takës its absolute maximum value of 48 at $(4,4)$ and $(-4,4)$ and its absolute minimum value of -4 at $(0,2)$.
5. Find the center of mass of a thin plate of constant density δ, bounded by the parabola $y=x^{2}$ and the line $y=4$. (Suggestion: it should be obvious from your picture that $\bar{x}=0$ by symmetry. It suffices to compute \bar{y}. Mass is $32 \delta / 3$.)
We sketch the region in the $x y$-plane. It is symmetric about the y-axis. We must compute both the mass M and the first moment M_{x} about th ϕx axis.

$$
\begin{aligned}
M_{x}=\iint_{R} y \delta d A=\delta \int_{-2}^{2} \int_{x^{2}}^{4} y d y d x & =\left.\delta \int_{-2}^{2} \frac{1}{2} y^{2}\right|_{x^{2}} ^{4} d x \frac{1}{-2} \\
& =\delta \int_{-2}^{2} 8-\frac{1}{2} x^{4} d x \\
& =\delta\left[8 x-\left.\frac{1}{10} x^{5}\right|_{-2} ^{2}\right. \\
& =\delta\left[16-\frac{32}{10}-\left(-16+\frac{32}{10}\right]=\delta \frac{128}{5}\right.
\end{aligned}
$$

whereas the mass is

$$
\begin{aligned}
M=\iint_{R} \delta d A=\delta \int_{-2}^{2} \int_{x^{2}}^{4} d y d x & =\left.\delta \int_{-2}^{2} y\right|_{x^{2}} ^{4} d x \\
& =\delta \int_{-2}^{2} 4-x^{2} d x \\
& =\delta\left[4 x-\left.\frac{1}{3} x^{3}\right|_{-2} ^{2}\right. \\
& =\delta\left[8-\frac{8}{3}-\left(-8+\frac{8}{3}\right]=\delta \frac{32}{3}\right.
\end{aligned}
$$

Therefore $\bar{y}=M_{x} / M=12 / 5$. The center of mass is $(0,12 / 5)$.
6. Change the Cartesian integral to an equivalent polar integral. Then evaluate the polar integral

$$
\begin{equation*}
\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{0} \frac{x e^{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}}, d y d x \tag{13}
\end{equation*}
$$

The region of integration is bounded by $-\sqrt{4-x^{2}} \leq y \leq 0$ and $0 \leq x \leq 2$ which is a quarter of a circle $\left(y=-\sqrt{4-x^{2}}\right)$ of radius 2 centered at $(0,0)$ and lying
in the fourth quadrant. To convert we describe this region as $0 \leq r \leq 2$ and $-\pi / 2 \leq \theta \leq 0$. We also have $x^{2}+y^{2}=r^{2}$ amd $x=r \cos \theta$ and $d A$ is $r d r d \theta$ so that

$$
\begin{aligned}
\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{0} \frac{x e^{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}} d y d x & =\int_{-\pi / 2}^{0} \int_{0}^{2} \frac{r \cos \theta e^{r^{2}}}{r} r d r d \theta \\
& =\int_{-\pi / 2}^{0} \cos \theta \int_{0}^{2} e^{r^{2}} r d r d \theta
\end{aligned}
$$

Substitute $u=r^{2}$ so that $d u=2 r d r$ and we have the above equals

$$
\begin{aligned}
\int_{-\pi / 2}^{0} \cos \theta \int_{0}^{2} e^{r^{2}} r d r d \theta & =\int_{-\pi / 2}^{0} \cos \theta \int_{0}^{4} e^{u}(1 / 2) d u d \theta \\
& =\left.\int_{-\pi / 2}^{0} \cos \theta(1 / 2) e^{u}\right|_{0} ^{4} d u d \theta \\
& =\frac{e^{4}-1}{2} \int_{-\pi / 2}^{0} \cos \theta d \theta=\left.\frac{e^{4}-1}{2} \sin \theta\right|_{-\pi / 2} ^{0}=\frac{e^{4}-1}{2}
\end{aligned}
$$

7. Find the mass of the solid in the first octant bounded by the coordinate planes, the plane $z+y=3$ and the cylinder $x^{2}+y^{2}=4$ if the density is $\delta(x, y, z)=x$.
Sketch the solid. The mass is

$$
\begin{equation*}
M=\iiint_{D} x d V=\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{0}^{3-y} x d z d x d y \tag{16}
\end{equation*}
$$

or in cylindrical coordinates

