Test 2,	Math 2850	
Solutions		Name

Page 1 of 4 Pages

1. Consider the surface $x^4 + 3xz + z^2 + \cos(\pi xy) = -2$ and the point $P_0(-1, 1, 2)$ on that surface. Find an equation of

(a) the tangent plane at P_0 For $F(x, y, z) = x^4 + 3xz + z^2 + \cos(\pi xy)$, we know that ∇F is perpendicular to the level surface.

$$\nabla F(x, y, z) = (4x^3 + 3z - \sin(\pi xy)\pi y)\vec{i} - \sin(\pi xy)\pi x\vec{j} + (3x + 2z)\vec{k}$$

$$\nabla F(-1, 1, 2) = 2\vec{i} + \vec{k}$$

so that the tangent plane 2(x - (-1)) + (z - 2) = 0 or 2x + z = 0

- (b) the normal line to the surface at P_0 . The normal line is $\vec{r}(t) = -\vec{i} + \vec{j} + 2\vec{k} + t(2\vec{i} + \vec{k})$
- 2. Sketch the region of integration and write an equivalent double integral with the the order of integration reversed. Do NOT evaluate.

$$\int_1^e \int_0^{\ln x} x^2 y \, dy dx$$

The region is $0 \le y \le \ln x$, $1 \le x \le e$. Sketch. The region is also $1 \le x \le e^y$, $0 \le y \le 1$:

3. Test the function $f(x, y) = 3xy - x^3 - y^3$ for local maxima, minima and saddle points.

Check for critical points. These occur when $\nabla f = \vec{0}$ or f is not differentiable but f is differentiable everywhere (because the partial derivatives exist and are continuous). Compute $\nabla f = (3y - 3x^2)\vec{i} + (3x - 3y^2)\vec{j}$. Set $\nabla f = \vec{0}$ gives $3y - 3x^2 = 0$ and $3x - 3y^2 = 0$. Therefore $y = x^2$ and $x = y^2$ so that $x = (x^2)^2 = x^4$. Therefore $x(1 - x^3) = 0$ which says x = 0 (in which case y = 0) or x = 1 (in which case y = 1). The critical points are (0,0) and (1,1).

(%)

(16)

7-26-11

(10)

(14)

Consider first (0,0). We have $f_{xx} = -6x$, $f_{xy} = 3$, $f_{yy} = -6y$ At (0,0), $f_{xx} = 0 = f_{yy}$ so that $f_{xx}f_{yy} - f_{xy}^2 = -9$ so that (0,0) is a saddle point by the second derivative test.

Consider next (1,1). At (1,1), $f_{xx} = -6$, $f_{yy} = -6$, so that $f_{xx}f_{yy} - f_{xy}^2 = 27$. Since $f_{xx} < 0$ this says (1,1) is a local maximum.

4. Find the absolute maximum and minimum values of $f(x, y) = 3x^2 + y^2 - 4y$ on the closed triangular region R in the xy-plane bounded by the lines y = 4 y = xand y = -x. (Show all your work.)

Sketch the triangular region. First we check the interior for critical points. We see

$$\nabla f = 6x\vec{i} + (2y - 4)\vec{j}$$

Set $\nabla f = \vec{0}$ and we see x = 0 and y = 2 so that (0,2) is a critical point. Since f is differentiable everywhere this is the only critical point.

Next we check the edges. Consider first the line y = 4 (-4 < x < 4) $f(x, 4) = 3x^2$ and this function has a minimum at x = 0 (set $(d/dx)3x^2 = 0$). We get the point (0,4).

The second edge is $y = x \ 0 < x < 4$ where $f(x, x) = 3x^2 + x^2 - 4x = 4x^2 - 4x$. Check for maxima and minima. Differentiate $(d/dx)(4x^2 - 4x) = 8x - 4$. The derivative is 0 when x = 1/2 so that we get (1/2, 1/2) is a second possible point.

The third and final edge is y = -x, $-4 \le x \le 0$ where $f(x, -x) = 3x^2 + x^2 + 4x$ Differentiate $(d/dx)(4x^2 + 4x) = 8x + 4$ and this is 0 when x = -1/2 Therefore (-1/2, 1/2) is a third point.

The corners are (-4,4),(4,4) and (0,0).

Evaluate f at all the points obtained.

Point P	f(P)
(0,2)	f(0,2) = -4
(0, 4)	f(0,4)=0
(1/2, 1/2)	f(1/2,1/2)=-1
(-1/2, 1/2)	f(-1/2,1/2)=-1
(-4, 4)	f(-4,4)=48
(4,4)	f(4,4) = 48
(0, 0)	f(0,0) = 0

We see that f takes its absolute maximum value of 48 at (4,4) and (-4,4) and its absolute minimum value of -4 at (0,2).

3

(2,4)

5. Find the center of mass of a thin plate of constant density δ , bounded by the parabola $y = x^2$ and the line y = 4. (Suggestion: it should be obvious from your picture that $\overline{x} = 0$ by symmetry. It suffices to compute \overline{y} . Mass is $32\delta/3$.)

We sketch the region in the xy-plane. It is symmetric about the y-axis. We must compute both the mass M and the first moment M_x about the x-axis.

$$M_{x} = \iint_{R} y \delta \, dA = \delta \int_{-2}^{2} \int_{x^{2}}^{4} y \, dy \, dx = \delta \int_{-2}^{2} \frac{1}{2} y^{2} |_{x^{2}}^{4} dx - \frac{1}{-2}$$
$$= \delta \int_{-2}^{2} 8 - \frac{1}{2} x^{4} \, dx$$
$$= \delta [8x - \frac{1}{10} x^{5}]_{-2}^{2}$$
$$= \delta [16 - \frac{32}{10} - (-16 + \frac{32}{10}] = \delta \frac{128}{5}$$

(-2,4)

whereas the mass is

$$M = \iint_R \delta \, dA = \delta \int_{-2}^2 \int_{x^2}^4 dy \, dx = \delta \int_{-2}^2 y |_{x^2}^4 \, dx$$

= $\delta \int_{-2}^2 4 - x^2 \, dx$
= $\delta [4x - \frac{1}{3}x^3]_{-2}^2$
= $\delta [8 - \frac{8}{3} - (-8 + \frac{8}{3}] = \delta \frac{32}{3}$

Therefore $\overline{y} = M_x/M = 12/5$. The center of mass is (0, 12/5).

6. Change the Cartesian integral to an equivalent polar integral. Then evaluate the polar integral

$$\int_0^2 \int_{-\sqrt{4-x^2}}^0 \frac{x e^{x^2 + y^2}}{\sqrt{x^2 + y^2}}, \, dy \, dx$$

The region of integration is bounded by $-\sqrt{4-x^2} \le y \le 0$ and $0 \le x \le 2$ which is a quarter of a circle $(y = -\sqrt{4-x^2})$ of radius 2 centered at (0,0) and lying

(13)

in the fourth quadrant. To convert we describe this region as $0 \le r \le 2$ and $-\pi/2 \le \theta \le 0$. We also have $x^2 + y^2 = r^2$ and $x = r \cos \theta$ and dA is $r \, dr \, d\theta$ so that

$$\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{0} \frac{xe^{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}} \, dy \, dx = \int_{-\pi/2}^{0} \int_{0}^{2} \frac{r\cos\theta e^{r^{2}}}{r} r \, dr \, d\theta$$
$$= \int_{-\pi/2}^{0} \cos\theta \int_{0}^{2} e^{r^{2}} r \, dr \, d\theta$$

Substitute $u = r^2$ so that du = 2r dr and we have the above equals

$$\int_{-\pi/2}^{0} \cos\theta \int_{0}^{2} e^{r^{2}} r \, dr \, d\theta = \int_{-\pi/2}^{0} \cos\theta \int_{0}^{4} e^{u} (1/2) \, du d\theta$$
$$= \int_{-\pi/2}^{0} \cos\theta (1/2) e^{u} |_{0}^{4} \, du d\theta$$
$$= \frac{e^{4} - 1}{2} \int_{-\pi/2}^{0} \cos\theta \, d\theta = \frac{e^{4} - 1}{2} \sin\theta |_{-\pi/2}^{0} = \frac{e^{4} - 1}{2}$$

7. Find the mass of the solid in the first octant bounded by the coordinate planes, the plane z + y = 3 and the cylinder $x^2 + y^2 = 4$ if the density is $\delta(x, y, z) = x$. Sketch the solid. The mass is

$$M = \iiint_D x \, dV = \int_0^2 \int_0^{\sqrt{4-y^2}} \int_0^{3-y} x \, dz \, dx \, dy$$

or in cylindrical coordinates

$$M = \int_{0}^{\pi/2} \int_{0}^{2} \int_{0}^{3-r\sin\theta} r\cos\theta \, dzr \, dr \, d\theta$$

$$R - quarter cirde$$
of roduin λ
in first quadrant.
$$Z = 3 - \gamma$$

$$K$$

(16)