13.1 Curves in Space:

We are interested in subsets of \mathbb{R}^{3} (such as quadrics studied in the previous section) and also functions defined on or to \mathbb{R}^{3}. We begin with mappings $\vec{r}(t)$ which describe position at time t of a particle, rocket or car. \vec{r} is a function defined on a real interval and taking values in \mathbb{R}^{3}.

Example: What is

$$
\vec{r}(t)=(t+1) \vec{i}+(2 t-1) \vec{j}-3 t \vec{k}=(\vec{i}-\vec{j})+t(\vec{i}+2 \vec{j}-3 \vec{k}) ?
$$

The path passes through $\vec{i}-\vec{j}$ (which is the point $(1,-1,0)$) at time $t=0$ and proceeds in the direction $\vec{i}+2 \vec{j}-3 \vec{k}$ and reaches $(2,1,-3)$ by time $t=1$. As time varies this curve traces out a straight line through $(1,-1,0)$ with direction vector $\vec{i}+2 \vec{j}-3 \vec{k}$.

Example: Find an equation for the straight line through (1,-3,2) and $(4,1,1)$.
Solution: There are many many solutions but

$$
\vec{r}(t)=\vec{i}-3 \vec{j}+2 \vec{k}+t(3 \vec{i}+4 \vec{j}-\vec{k})
$$

works because $\vec{r}(0)$ is $(1,-3,2)$ and $\vec{r}(1)$ is $(4,1,1)$.
Example: Graph the vector function $\vec{r}(t)=2 \cos t \vec{i}+3 \sin t \vec{j}+t \vec{k}$.
Solution: Recall from Section 11.1 (Parameterizatin of Planar curves) what $x(t)=2 \cos t$ and $y=3 \sin t$ is. (Note if we project $\vec{r}(t)=2 \cos t \vec{i}+3 \sin t \vec{j}+t \vec{k}$ onto the $x y$-plane we get $(x(t), y(t))=(2 \cos t, 3 \sin t)$.) This we found was an ellipse

$$
\left(\frac{x(t)}{2}\right)^{2}+\left(\frac{y(t)}{3}\right)^{2}=(\cos t)^{2}+(\sin t)^{2}=1
$$

(The major axis is 3 and the minor is 2.) Moreover the ellipse is traces out counterclockwise. It follows that our curve $\vec{r}(t)$ lies above that ellipse. One can see that as time passes the curve proceeds to rise one unit distance per unit time. The curve is a spiral above the ellipse; alternatively it is a spiral on the elliptic cylinder $x^{2} / 4+y^{2} / 9=1$.

Definition: We say that the limit of $\vec{r}(t)$ as t approaches t_{0} exists if there exists \vec{L} so that $|\vec{r}(t)-\vec{L}|$ can be made arbitrarily small by choosing $\left|t-t_{0}\right|$ sufficiently small. We write

$$
\lim _{t \rightarrow t_{0}} \vec{r}(t)=\vec{L}
$$

Unfold the notation: $\vec{r}(t)=f(t) \vec{i}+g(t) \vec{j}+h(t) \vec{k}$. $(\vec{r}(t)$ has components three real valued functions.) Also $\vec{L}=L_{1} \vec{i}+L_{2} \vec{j}+L_{3} \vec{k}$ so that the definition says that $\lim _{t \rightarrow t_{0}} \vec{r}(t)=\vec{L}$ if and only if $\left(\left(f(t)-L_{1}\right)^{2}+\left(g(t)-L_{2}\right)^{2}+\left(h(t)-L_{3}\right)^{2}\right)^{1 / 2}$ can be made small by choosing $\left|t-t_{0}\right|$ sufficiently small. It is not difficult to see that the only way to make $\left(\left(f(t)-L_{1}\right)^{2}+(g(t)-\right.$ $\left.\left.L_{2}\right)^{2}+\left(h(t)-L_{3}\right)^{2}\right)^{1 / 2}$ small is to make $\left|f(t)-L_{1}\right|,\left|g(t)-L_{2}\right|$ and $\left|z(t)-L_{3}\right|$ all small. Therefore the limit exists if and only if all the components limits exist: $\lim _{t \rightarrow t_{0}} \vec{r}(t)=\vec{L}$ if and only if $\lim _{t \rightarrow t_{0}} x(t)=L_{1}, \lim _{t \rightarrow t_{0}} y(t)=L_{2}$ and $\lim _{t \rightarrow t_{0}} z(t)=L_{3}$. In brief we can work component by component.

Example:

$$
\lim _{t \rightarrow 0}\left(t^{2}+3\right) \vec{i}+\frac{\sin t}{t} \vec{j}+\frac{t^{2}-1}{t-1} \vec{k}=3 \vec{i}+\vec{j}+\vec{k}
$$

Definition A vector function $\vec{r}(t)$ is continuous at t_{0} if

1. t_{0} is in the domain of \vec{r}.
2. $\lim _{t \rightarrow t_{0}} \vec{r}(t)=\vec{L}$ exists.
3. $\vec{r}\left(t_{0}\right)=\vec{L}$.

We say \vec{r} is continuous if it is continuous at every point in its domain.
It follows that $\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}$ is continuous if and only if x, y and z are.
Definition A vector function $\vec{r}(t)$ is differentiable at t_{0} if

$$
\lim _{h \rightarrow 0} \frac{\vec{r}\left(t_{0}+h\right)-\vec{r}\left(t_{0}\right)}{h}=\vec{r}^{\prime}\left(t_{0}\right)
$$

exists. The limit $\vec{r}\left(t_{0}\right)$ (if it exists) is the derivative of \vec{r} at t_{0}. We say \vec{r} is differentiable if it is differentiable at every point $t-0$ of its domain.

It follows that $\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}$ is differentiable if and only if x, y and z are and

$$
\vec{r}^{\prime}(t)=x^{\prime}(t) \vec{i}_{y}^{\prime}(t) \vec{j}+z^{\prime}(t) \vec{k}
$$

Example: If $\vec{r}(t)=2 t \cos t \vec{i}+3 t \sin t \vec{j}+t^{2} \vec{k}$ then $\vec{r}^{\prime}(t)=(2 \cos t-2 t \sin t) \vec{i}+(3 \sin t+$ $3 t \cos t) \vec{j}+2 t \vec{k}$

Physical Intepretation: What is

$$
\frac{\vec{r}\left(t_{0}+h\right)-\vec{r}\left(t_{0}\right)}{h} ?
$$

It is the displacement $\vec{r}\left(t_{0}+h\right)-\vec{r}\left(t_{0}\right)$ over the time interval t_{0} to $t_{0}+h$ divided by the time elapsed h and that is average velocity (a vector!) Thus $\vec{r}^{\prime}\left(t_{0}\right)$ is the instantaneous velocity and it is a vector tangent to the curve.

Picture

We therefore define the velocity of a path $\vec{r}(t)$ is $\vec{v}(t)=\vec{r}^{\prime}(t)$ and the acceleration is $\vec{a}(t)=\vec{v}^{\prime}(t)=\vec{r}^{\prime \prime}(t)$. Newton's Second Law is that force is $\vec{F}=m \vec{a}$ where m denotes the mass of the object being acted on.

Example: If $\vec{r}(t)=2 \cos t \vec{i}+3 \sin t \vec{j}+t \vec{k}$ (which is a spiral on an elliptic cylinder) then $\vec{v}(t)=-2 \sin t \vec{i}+3 \cos t \vec{j}+\vec{k}$ and $\vec{a}(t)=-2 \cos t \vec{i}-3 \sin t \vec{j}$. Notice the acceleration is toward the center of the cylinder.

Differentiation Rules: The rules for differentiation follwo from the rules for differentiating the real valued components but we mention

Rule 5: $\frac{d}{d t}(\vec{u} \cdot \vec{v})(t)=\vec{u}^{\prime}(t) \cdot \vec{v}(t)+\operatorname{vecu}(t) \cdot \vec{v}^{\prime}(t)$.
Rule 6: $\frac{d}{d t}(\vec{u} \times \vec{v})(t)=\vec{u}^{\prime}(t) \times \vec{v}(t)+v e c u(t) \times \vec{v}^{\prime}(t)$.

Example: If the speed $(|\vec{v}(t)|)$ is constant then the acceleration is perpendicular to the velocity.

We know that $c^{2}=|\vec{v}(t)|^{2}=\vec{v}(t) \cdot \vec{v}(t)$ where c is the constant speed. Differentiate

$$
0=\vec{v}^{\prime}(t) \cdot \vec{v}(t)+\vec{v}(t) \cdot \vec{v}^{\prime}(t)=2 \vec{a}(t) \cdot \vec{v}(t)
$$

and this just says the acceleration is perpendicular to the velocity.

